↓ Skip to main content

Pyrosequencing

Overview of attention for book
Cover of 'Pyrosequencing'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The History of Pyrosequencing ®
  3. Altmetric Badge
    Chapter 2 PyroMark(®) Instruments, Chemistry, and Software for Pyrosequencing(®) Analysis.
  4. Altmetric Badge
    Chapter 3 Software-Based Pyrogram ® Evaluation
  5. Altmetric Badge
    Chapter 4 Quantitative Validation and Quality Control of Pyrosequencing ® Assays
  6. Altmetric Badge
    Chapter 5 Extended KRAS and NRAS Mutation Profiling by Pyrosequencing ®
  7. Altmetric Badge
    Chapter 6 Universal BRAF State Detection by the Pyrosequencing ® -Based U-BRAF V600 Assay
  8. Altmetric Badge
    Chapter 7 Pyrosequencing
  9. Altmetric Badge
    Chapter 8 Analysis of Mutational Hotspots in Routinely Processed Bone Marrow Trephines by Pyrosequencing ®
  10. Altmetric Badge
    Chapter 9 Analysis of Copy Number Variation by Pyrosequencing(®) Using Paralogous Sequences.
  11. Altmetric Badge
    Chapter 10 Prenatal Diagnosis of Chromosomal Aneuploidies by Quantitative Pyrosequencing(®).
  12. Altmetric Badge
    Chapter 11 HLA-B and HLA-C Supratyping by Pyrosequencing ®
  13. Altmetric Badge
    Chapter 12 Allele Quantification Pyrosequencing(®) at Designated SNP Sites to Detect Allelic Expression Imbalance and Loss-of-Heterozygosity.
  14. Altmetric Badge
    Chapter 13 Quantitative DNA Methylation Analysis by Pyrosequencing(®).
  15. Altmetric Badge
    Chapter 14 Quantitative Methylation Analysis of the PCDHB Gene Cluster.
  16. Altmetric Badge
    Chapter 15 Assessment of Changes in Global DNA Methylation Levels by Pyrosequencing(®) of Repetitive Elements.
  17. Altmetric Badge
    Chapter 16 Global Analysis of DNA 5-Methylcytosine Using the Luminometric Methylation Assay, LUMA.
  18. Altmetric Badge
    Chapter 17 Limiting Dilution Bisulfite Pyrosequencing(®): A Method for Methylation Analysis of Individual DNA Molecules in a Single or a Few Cells.
  19. Altmetric Badge
    Chapter 18 Detection of Loss of Imprinting by Pyrosequencing(®).
  20. Altmetric Badge
    Chapter 19 Analysis of DNA Methylation Patterns in Single Blastocysts by Pyrosequencing(®).
  21. Altmetric Badge
    Chapter 20 Allele-Specific DNA Methylation Detection by Pyrosequencing(®).
  22. Altmetric Badge
    Chapter 21 SNP-Based Quantification of Allele-Specific DNA Methylation Patterns by Pyrosequencing ®
  23. Altmetric Badge
    Chapter 22 DNA Methylation Analysis of ChIP Products at Single Nucleotide Resolution by Pyrosequencing(®).
  24. Altmetric Badge
    Chapter 23 Multiplex Pyrosequencing ® : Simultaneous Genotyping Based on SNPs from Distant Genomic Regions
  25. Altmetric Badge
    Chapter 24 Pyrosequencing
  26. Altmetric Badge
    Chapter 25 Application of Pyrosequencing ® in Food Biodefense
  27. Altmetric Badge
    Chapter 26 Pyrosequencing
  28. Altmetric Badge
    Chapter 27 Tissue-Specific DNA Methylation Patterns in Forensic Samples Detected by Pyrosequencing(®).
Attention for Chapter 21: SNP-Based Quantification of Allele-Specific DNA Methylation Patterns by Pyrosequencing ®
Altmetric Badge

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
SNP-Based Quantification of Allele-Specific DNA Methylation Patterns by Pyrosequencing ®
Chapter number 21
Book title
Pyrosequencing
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-2715-9_21
Pubmed ID
Book ISBNs
978-1-4939-2714-2, 978-1-4939-2715-9
Authors

Florence Busato, Jörg Tost

Abstract

The analysis of allele-specific DNA methylation patterns has recently attracted much interest as loci of allele-specific DNA methylation overlap with known risk loci for complex diseases and the analysis might contribute to the fine-mapping and interpretation of non-coding genetic variants associated with complex diseases and improve the understanding between genotype and phenotype. In the presented protocol, we present a method for the analysis of DNA methylation patterns on both alleles separately using heterozygous Single Nucleotide Polymorphisms (SNPs) as anchor for allele-specific PCR amplification followed by analysis of the allele-specific DNA methylation patterns by Pyrosequencing(®). Pyrosequencing is an easy-to-handle, quantitative real-time sequencing method that is frequently used for genotyping as well as for the analysis of DNA methylation patterns. The protocol consists of three major steps: (1) identification of individuals heterozygous for a SNP in a region of interest using Pyrosequencing; (2) analysis of the DNA methylation patterns surrounding the SNP on bisulfite-treated DNA to identify regions of potential allele-specific DNA methylation; and (3) the analysis of the DNA methylation patterns associated with each of the two alleles, which are individually amplified using allele-specific PCR. The enrichment of the targeted allele is re-enforced by modification of the allele-specific primers at the allele-discriminating base with Locked Nucleic Acids (LNA). For the proof-of-principle of the developed approach, we provide assay details for three imprinted genes (IGF2, IGF2R, and PEG3) within this chapter. The mean of the DNA methylation patterns derived from the individual alleles corresponds well to the overall DNA methylation patterns and the developed approach proved more reliable compared to other protocols for allele-specific DNA methylation analysis.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
South Africa 1 8%
Unknown 11 92%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 42%
Unspecified 1 8%
Student > Doctoral Student 1 8%
Other 1 8%
Student > Master 1 8%
Other 1 8%
Unknown 2 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 25%
Medicine and Dentistry 2 17%
Agricultural and Biological Sciences 2 17%
Business, Management and Accounting 1 8%
Unspecified 1 8%
Other 1 8%
Unknown 2 17%