↓ Skip to main content

Pyrosequencing

Overview of attention for book
Cover of 'Pyrosequencing'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The History of Pyrosequencing ®
  3. Altmetric Badge
    Chapter 2 PyroMark(®) Instruments, Chemistry, and Software for Pyrosequencing(®) Analysis.
  4. Altmetric Badge
    Chapter 3 Software-Based Pyrogram ® Evaluation
  5. Altmetric Badge
    Chapter 4 Quantitative Validation and Quality Control of Pyrosequencing ® Assays
  6. Altmetric Badge
    Chapter 5 Extended KRAS and NRAS Mutation Profiling by Pyrosequencing ®
  7. Altmetric Badge
    Chapter 6 Universal BRAF State Detection by the Pyrosequencing ® -Based U-BRAF V600 Assay
  8. Altmetric Badge
    Chapter 7 Pyrosequencing
  9. Altmetric Badge
    Chapter 8 Analysis of Mutational Hotspots in Routinely Processed Bone Marrow Trephines by Pyrosequencing ®
  10. Altmetric Badge
    Chapter 9 Analysis of Copy Number Variation by Pyrosequencing(®) Using Paralogous Sequences.
  11. Altmetric Badge
    Chapter 10 Prenatal Diagnosis of Chromosomal Aneuploidies by Quantitative Pyrosequencing(®).
  12. Altmetric Badge
    Chapter 11 HLA-B and HLA-C Supratyping by Pyrosequencing ®
  13. Altmetric Badge
    Chapter 12 Allele Quantification Pyrosequencing(®) at Designated SNP Sites to Detect Allelic Expression Imbalance and Loss-of-Heterozygosity.
  14. Altmetric Badge
    Chapter 13 Quantitative DNA Methylation Analysis by Pyrosequencing(®).
  15. Altmetric Badge
    Chapter 14 Quantitative Methylation Analysis of the PCDHB Gene Cluster.
  16. Altmetric Badge
    Chapter 15 Assessment of Changes in Global DNA Methylation Levels by Pyrosequencing(®) of Repetitive Elements.
  17. Altmetric Badge
    Chapter 16 Global Analysis of DNA 5-Methylcytosine Using the Luminometric Methylation Assay, LUMA.
  18. Altmetric Badge
    Chapter 17 Limiting Dilution Bisulfite Pyrosequencing(®): A Method for Methylation Analysis of Individual DNA Molecules in a Single or a Few Cells.
  19. Altmetric Badge
    Chapter 18 Detection of Loss of Imprinting by Pyrosequencing(®).
  20. Altmetric Badge
    Chapter 19 Analysis of DNA Methylation Patterns in Single Blastocysts by Pyrosequencing(®).
  21. Altmetric Badge
    Chapter 20 Allele-Specific DNA Methylation Detection by Pyrosequencing(®).
  22. Altmetric Badge
    Chapter 21 SNP-Based Quantification of Allele-Specific DNA Methylation Patterns by Pyrosequencing ®
  23. Altmetric Badge
    Chapter 22 DNA Methylation Analysis of ChIP Products at Single Nucleotide Resolution by Pyrosequencing(®).
  24. Altmetric Badge
    Chapter 23 Multiplex Pyrosequencing ® : Simultaneous Genotyping Based on SNPs from Distant Genomic Regions
  25. Altmetric Badge
    Chapter 24 Pyrosequencing
  26. Altmetric Badge
    Chapter 25 Application of Pyrosequencing ® in Food Biodefense
  27. Altmetric Badge
    Chapter 26 Pyrosequencing
  28. Altmetric Badge
    Chapter 27 Tissue-Specific DNA Methylation Patterns in Forensic Samples Detected by Pyrosequencing(®).
Attention for Chapter 25: Application of Pyrosequencing ® in Food Biodefense
Altmetric Badge

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Application of Pyrosequencing ® in Food Biodefense
Chapter number 25
Book title
Pyrosequencing
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-2715-9_25
Pubmed ID
Book ISBNs
978-1-4939-2714-2, 978-1-4939-2715-9
Authors

Kingsley Kwaku Amoako, Amoako, Kingsley Kwaku

Abstract

The perpetration of a bioterrorism attack poses a significant risk for public health with potential socioeconomic consequences. It is imperative that we possess reliable assays for the rapid and accurate identification of biothreat agents to make rapid risk-informed decisions on emergency response. The development of advanced methodologies for the detection of biothreat agents has been evolving rapidly since the release of the anthrax spores in the mail in 2001, and recent advances in detection and identification techniques could prove to be an essential component in the defense against biological attacks. Sequence-based approaches such as Pyrosequencing(®), which has the capability to determine short DNA stretches in real time using biotinylated PCR amplicons, have potential biodefense applications. Using markers from the virulence plasmids and chromosomal regions, my laboratory has demonstrated the power of this technology in the rapid, specific, and sensitive detection of B. anthracis spores and Yersinia pestis in food. These are the first applications for the detection of the two organisms in food. Furthermore, my lab has developed a rapid assay to characterize the antimicrobial resistance (AMR) gene profiles for Y. pestis using Pyrosequencing. Pyrosequencing is completed in about 60 min (following PCR amplification) and yields accurate and reliable results with an added layer of confidence, thus enabling rapid risk-informed decisions to be made. A typical run yields 40-84 bp reads with 94-100 % identity to the expected sequence. It also provides a rapid method for determining the AMR profile as compared to the conventional plate method which takes several days. The method described is proposed as a novel detection system for potential application in food biodefense.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 42%
Other 2 17%
Librarian 1 8%
Student > Ph. D. Student 1 8%
Unspecified 1 8%
Other 0 0%
Unknown 2 17%
Readers by discipline Count As %
Medicine and Dentistry 2 17%
Agricultural and Biological Sciences 2 17%
Veterinary Science and Veterinary Medicine 1 8%
Unspecified 1 8%
Environmental Science 1 8%
Other 2 17%
Unknown 3 25%