↓ Skip to main content

Nanoparticle‐Based Fluoroionophore for Analysis of Potassium Ion Dynamics in 3D Tissue Models and In Vivo

Overview of attention for article published in Advanced Functional Materials, January 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
4 tweeters
patent
1 patent

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Nanoparticle‐Based Fluoroionophore for Analysis of Potassium Ion Dynamics in 3D Tissue Models and In Vivo
Published in
Advanced Functional Materials, January 2018
DOI 10.1002/adfm.201704598
Pubmed ID
Authors

Bernhard J. Müller, Alexander V. Zhdanov, Sergey M. Borisov, Tara Foley, Irina A. Okkelman, Vassiliy Tsytsarev, Qinggong Tang, Reha S. Erzurumlu, Yu Chen, Haijiang Zhang, Claudio Toncelli, Ingo Klimant, Dmitri B. Papkovsky, Ruslan I. Dmitriev

Abstract

The imaging of real-time fluxes of K+ ions in live cell with high dynamic range (5-150 mM) is of paramount importance for neuroscience and physiology of the gastrointestinal tract, kidney and other tissues. In particular, the research on high-performance deep-red fluorescent nanoparticle-based biosensors is highly anticipated. We found that BODIPY-based FI3 K+-sensitive fluoroionophore encapsulated in cationic polymer RL100 nanoparticles displays unusually strong efficiency in staining of broad spectrum of cell models, such as primary neurons and intestinal organoids. Using comparison of brightness, photostability and fluorescence lifetime imaging microscopy (FLIM) we confirmed that FI3 nanoparticles display distinctively superior intracellular staining compared to the free dye. We evaluated FI3 nanoparticles in real-time live cell imaging and found that it is highly useful for monitoring intra- and extracellular K+ dynamics in cultured neurons. Proof-of-concept in vivo brain imaging confirmed applicability of the biosensor for visualization of epileptic seizures. Collectively, this data makes fluoroionophore FI3 a versatile cross-platform fluorescent biosensor, broadly compatible with diverse experimental models and that crown ether-based polymer nanoparticles can provide a new venue for design of efficient fluorescent probes.

Twitter Demographics

The data shown below were collected from the profiles of 4 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 22%
Researcher 10 20%
Student > Master 9 18%
Other 5 10%
Student > Bachelor 4 8%
Other 3 6%
Unknown 9 18%
Readers by discipline Count As %
Chemistry 12 24%
Neuroscience 5 10%
Biochemistry, Genetics and Molecular Biology 4 8%
Agricultural and Biological Sciences 4 8%
Engineering 3 6%
Other 7 14%
Unknown 16 31%

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 May 2022.
All research outputs
#4,414,516
of 21,702,786 outputs
Outputs from Advanced Functional Materials
#1,903
of 7,952 outputs
Outputs of similar age
#127,638
of 499,960 outputs
Outputs of similar age from Advanced Functional Materials
#45
of 169 outputs
Altmetric has tracked 21,702,786 research outputs across all sources so far. Compared to these this one has done well and is in the 76th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,952 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.7. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 499,960 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 169 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.