↓ Skip to main content

Alfalfa-containing diets alter luminal microbiota structure and short chain fatty acid sensing in the caecal mucosa of pigs

Overview of attention for article published in Journal of Animal Science and Biotechnology, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
googleplus
1 Google+ user

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Alfalfa-containing diets alter luminal microbiota structure and short chain fatty acid sensing in the caecal mucosa of pigs
Published in
Journal of Animal Science and Biotechnology, January 2018
DOI 10.1186/s40104-017-0216-y
Pubmed ID
Authors

Jiawei Wang, Chunfu Qin, Ting He, Kai Qiu, Wenjuan Sun, Xin Zhang, Ning Jiao, Weiyun Zhu, Jingdong Yin

Abstract

Pork produced by outdoor-reared pigs raised mostly on alfalfa pastures attracts increasing population of consumer from most of the world. In China, pigs were raised with alfalfa-containing diets to seek for good quality pork. However, the influence of dietary alfalfa involving high level of insoluble dietary fiber (IDF) on pig intestinal luminal microbiota composition remains unclear. The objective of this study was to investigate the effects of alfalfa on luminal microbiota and short chain fatty acids (SCFA) production, and gene expressions involved in SCFA sensing, transporting and absorbing in pig caecal mucosa. Twenty-four growing pigs were randomly allotted to four diets containing 0%, 5%, 10% and 15% alfalfa meal for a 28-d experiment. Ingestion of alfalfa meal-contained diets significantly increased the ratio of body weight gain to feed consumption. Illumina MiSeq sequencing of the V3 region of the 16S rRNA genes showed that alfalfa-containing diet significantly decreased the relative abundance of genera Turicibacter, Acidiphilium, Paracoccus, Propionibacterium, Corynebacterium, Pseudomonas, Acinetobacter, and Staphylococcus, and increased the relative abundance of genera Lachnospira, Marvinbryantia, and Desulfovibrio in the caecal digesta. Butyrate concentration was significantly increased in the hindgut by the supplementation of alfalfa meal in diets. The mRNA gene expressions of FFAR3, SMCT1, MCT1, PYY, and GCG were significantly increased in the caecal mucosa of pigs fed alfalfa meal. Our results suggested that alfalfa-containing diet has exerted significant impacts on caecal microbiota composition, butyrate concentration and significantly upregulated mRNA expression of host caecal mucosal genes involved in SCFA sensing and absorption as well as regulation of satiety.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 18%
Student > Bachelor 5 15%
Student > Doctoral Student 4 12%
Student > Master 3 9%
Lecturer 2 6%
Other 3 9%
Unknown 10 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 27%
Biochemistry, Genetics and Molecular Biology 4 12%
Medicine and Dentistry 3 9%
Immunology and Microbiology 3 9%
Veterinary Science and Veterinary Medicine 2 6%
Other 3 9%
Unknown 9 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 January 2018.
All research outputs
#16,053,755
of 25,382,440 outputs
Outputs from Journal of Animal Science and Biotechnology
#307
of 904 outputs
Outputs of similar age
#256,292
of 450,867 outputs
Outputs of similar age from Journal of Animal Science and Biotechnology
#12
of 21 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 904 research outputs from this source. They receive a mean Attention Score of 3.3. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 450,867 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.