↓ Skip to main content

Transcriptional responses of Escherichia coli during recovery from inorganic or organic mercury exposure

Overview of attention for article published in BMC Genomics, January 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptional responses of Escherichia coli during recovery from inorganic or organic mercury exposure
Published in
BMC Genomics, January 2018
DOI 10.1186/s12864-017-4413-z
Pubmed ID
Authors

Stephen P. LaVoie, Anne O. Summers

Abstract

The protean chemical properties of mercury have long made it attractive for diverse applications, but its toxicity requires great care in its use, disposal, and recycling. Mercury occurs in multiple chemical forms, and the molecular basis for the distinct toxicity of its various forms is only partly understood. Global transcriptomics applied over time can reveal how a cell recognizes a toxicant and what cellular subsystems it marshals to repair and recover from the damage. The longitudinal effects on the transcriptome of exponential phase E. coli were compared during sub-acute exposure to mercuric chloride (HgCl2) or to phenylmercuric acetate (PMA) using RNA-Seq. Differential gene expression revealed common and distinct responses to the mercurials throughout recovery. Cultures exhibited growth stasis immediately after each mercurial exposure but returned to normal growth more quickly after PMA exposure than after HgCl2 exposure. Correspondingly, PMA rapidly elicited up-regulation of a large number of genes which continued for 30 min, whereas fewer genes were up-regulated early after HgCl2 exposure only some of which overlapped with PMA up-regulated genes. By 60 min gene expression in PMA-exposed cells was almost indistinguishable from unexposed cells, but HgCl2 exposed cells still had many differentially expressed genes. Relative expression of energy production and most metabolite uptake pathways declined with both compounds, but nearly all stress response systems were up-regulated by one or the other mercurial during recovery. Sub-acute exposure influenced expression of ~45% of all genes with many distinct responses for each compound, reflecting differential biochemical damage by each mercurial and the corresponding resources available for repair. This study is the first global, high-resolution view of the transcriptional responses to any common toxicant in a prokaryotic model system from exposure to recovery of active growth. The responses provoked by these two mercurials in this model bacterium also provide insights about how higher organisms may respond to these ubiquitous metal toxicants.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 45 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 31%
Researcher 6 13%
Student > Bachelor 5 11%
Student > Doctoral Student 4 9%
Student > Master 4 9%
Other 7 16%
Unknown 5 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 38%
Agricultural and Biological Sciences 4 9%
Environmental Science 4 9%
Engineering 3 7%
Social Sciences 2 4%
Other 10 22%
Unknown 5 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 September 2018.
All research outputs
#15,488,947
of 23,016,919 outputs
Outputs from BMC Genomics
#6,724
of 10,697 outputs
Outputs of similar age
#270,396
of 442,088 outputs
Outputs of similar age from BMC Genomics
#133
of 219 outputs
Altmetric has tracked 23,016,919 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,697 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,088 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 219 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.