↓ Skip to main content

Intrauterine insemination versus intracervical insemination in donor sperm treatment

Overview of attention for article published in Cochrane database of systematic reviews, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 tweeters

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Intrauterine insemination versus intracervical insemination in donor sperm treatment
Published in
Cochrane database of systematic reviews, January 2018
DOI 10.1002/14651858.cd000317.pub4
Pubmed ID
Authors

Petronella AL Kop, Monique H Mochtar, Paul A O'Brien, Fulco Van der Veen, Madelon van Wely

Abstract

The first-line treatment in donor sperm treatment consists of inseminations that can be done by intrauterine insemination (IUI) or by intracervical insemination (ICI). To compare the effectiveness and safety of intrauterine insemination (IUI) and intracervical insemination (ICI) in women who start donor sperm treatment. We searched the Cochrane Gynaecology and Fertility Group Trials Register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL in October 2016, checked references of relevant studies, and contacted study authors and experts in the field to identify additional studies. We searched PubMed, Google Scholar, the Grey literature, and five trials registers on 15 December 2017. We included randomised controlled trials (RCTs) reporting on IUI versus ICI in natural cycles or with ovarian stimulation, and RCTs comparing different cointerventions in IUI and ICI. We included cross-over studies if pre-cross-over data were available. We used standard methodological procedures recommended by Cochrane. We collected data on primary outcomes of live birth and multiple pregnancy rates, and on secondary outcomes of clinical pregnancy, miscarriage, and cancellation rates. We included six RCTs (708 women analysed) on ICI and IUI in donor sperm treatment. Two studies compared IUI and ICI in natural cycles, two studies compared IUI and ICI in gonadotrophin-stimulated cycles, and two studies compared timing of IUI and ICI. There was very low-quality evidence; the main limitations were risk of bias due to poor reporting of study methods, and serious imprecision.IUI versus ICI in natural cyclesThere was insufficient evidence to determine whether there was any clear difference in live birth rate between IUI and ICI in natural cycles (odds ratio (OR) 3.24, 95% confidence interval (CI) 0.12 to 87.13; 1 RCT, 26 women; very low-quality evidence). There was only one live birth in this study (in the IUI group). IUI resulted in higher clinical pregnancy rates (OR 6.18, 95% CI 1.91 to 20.03; 2 RCTs, 76 women; I² = 48%; very low-quality evidence).No multiple pregnancies or miscarriages occurred in this study.IUI versus ICI in gonadotrophin-stimulated cyclesThere was insufficient evidence to determine whether there was any clear difference in live birth rate between IUI and ICI in gonadotrophin-stimulated cycles (OR 2.55, 95% CI 0.72 to 8.96; 1 RCT, 43 women; very low-quality evidence). This suggested that if the chance of a live birth following ICI in gonadotrophin-stimulated cycles was assumed to be 30%, the chance following IUI in gonadotrophin-stimulated cycles would be between 24% and 80%. IUI may result in higher clinical pregnancy rates than ICI (OR 2.83, 95% CI 1.38 to 5.78; 2 RCTs, 131 women; I² = 0%; very low-quality evidence). IUI may be associated with higher multiple pregnancy rates than ICI (OR 2.77, 95% CI 1.00 to 7.69; 2 RCTs, 131 women; I² = 0%; very low-quality evidence). This suggested that if the risk of multiple pregnancy following ICI in gonadotrophin-stimulated cycles was assumed to be 10%, the risk following IUI would be between 10% and 46%.We found insufficient evidence to determine whether there was any clear difference between the groups in miscarriage rates in gonadotrophin-stimulated cycles (OR 1.97, 95% CI 0.43 to 9.04; 2 RCTs, overall 67 pregnancies; I² = 50%; very low-quality evidence).Timing of IUI and ICIWe found no studies that reported on live birth rates.We found a higher clinical pregnancy rate when IUI was timed one day after a rise in blood levels of luteinising hormone (LH) compared to IUI two days after a rise in blood levels of LH (OR 2.00, 95% CI 1.14 to 3.53; 1 RCT, 351 women; low-quality evidence). We found insufficient evidence to determine whether there was any clear difference in clinical pregnancy rates between ICI timed after a rise in urinary levels of LH versus a rise in basal temperature plus cervical mucus scores (OR 1.31, 95% CI 0.42 to 4.11; 1 RCT, 56 women; very low-quality evidence).Neither of these studies reported multiple pregnancy or miscarriage rates as outcomes. There was insufficient evidence to determine whether there was a clear difference in live birth rates between IUI and ICI in natural or gonadotrophin-stimulated cycles in women who started with donor sperm treatment. There was insufficient evidence available for the effect of timing of IUI or ICI on live birth rates. Very low-quality data suggested that in gonadotrophin-stimulated cycles, ICI may be associated with a higher clinical pregnancy rate than IUI, but also with a higher risk of multiple pregnancy rate. We concluded that the current evidence was too limited to choose between IUI or ICI, in natural cycles or with ovarian stimulation, in donor sperm treatment.

Twitter Demographics

The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 27%
Unspecified 5 19%
Other 3 12%
Student > Bachelor 3 12%
Researcher 3 12%
Other 5 19%
Readers by discipline Count As %
Medicine and Dentistry 8 31%
Unspecified 7 27%
Nursing and Health Professions 2 8%
Social Sciences 2 8%
Agricultural and Biological Sciences 2 8%
Other 5 19%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 January 2018.
All research outputs
#7,554,644
of 12,527,219 outputs
Outputs from Cochrane database of systematic reviews
#8,371
of 9,882 outputs
Outputs of similar age
#179,075
of 342,765 outputs
Outputs of similar age from Cochrane database of systematic reviews
#137
of 163 outputs
Altmetric has tracked 12,527,219 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,882 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.5. This one is in the 16th percentile – i.e., 16% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,765 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 163 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.