↓ Skip to main content

Characterization of Nanoparticles Intended for Drug Delivery

Overview of attention for book
Cover of 'Characterization of Nanoparticles Intended for Drug Delivery'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Evaluating Nanomedicines: Obstacles and Advancements
  3. Altmetric Badge
    Chapter 2 Detection of Bacterial Contamination in Nanoparticle Formulations by Agar Plate Test
  4. Altmetric Badge
    Chapter 3 Considerations and Some Practical Solutions to Overcome Nanoparticle Interference with LAL Assays and to Avoid Endotoxin Contamination in Nanoformulations
  5. Altmetric Badge
    Chapter 4 Elemental Analysis in Biological Matrices Using ICP-MS
  6. Altmetric Badge
    Chapter 5 PEG Quantitation Using Reversed-Phase High-Performance Liquid Chromatography and Charged Aerosol Detection
  7. Altmetric Badge
    Chapter 6 Quantitation of Surface Coating on Nanoparticles Using Thermogravimetric Analysis
  8. Altmetric Badge
    Chapter 7 Immunoelectron Microscopy for Visualization of Nanoparticles
  9. Altmetric Badge
    Chapter 8 Imaging of Liposomes by Transmission Electron Microscopy
  10. Altmetric Badge
    Chapter 9 Updated Method for In Vitro Analysis of Nanoparticle Hemolytic Properties
  11. Altmetric Badge
    Chapter 10 In Vitro Assessment of Nanoparticle Effects on Blood Coagulation
  12. Altmetric Badge
    Chapter 11 In Vitro Analysis of Nanoparticle Effects on the Zymosan Uptake by Phagocytic Cells
  13. Altmetric Badge
    Chapter 12 Assessing NLRP3 Inflammasome Activation by Nanoparticles
  14. Altmetric Badge
    Chapter 13 Analysis of Complement Activation by Nanoparticles
  15. Altmetric Badge
    Chapter 14 Methods for Analysis of Nanoparticle Immunosuppressive Properties In Vitro and In Vivo
  16. Altmetric Badge
    Chapter 15 Analysis of Pro-inflammatory Cytokine and Type II Interferon Induction by Nanoparticles
  17. Altmetric Badge
    Chapter 16 Analysis of Nanoparticle-Adjuvant Properties In Vivo
  18. Altmetric Badge
    Chapter 17 In Vitro and In Vivo Methods for Analysis of Nanoparticle Potential to Induce Delayed-Type Hypersensitivity Reactions
  19. Altmetric Badge
    Chapter 18 Autophagy Monitoring Assay II: Imaging Autophagy Induction in LLC-PK1 Cells Using GFP-LC3 Protein Fusion Construct
  20. Altmetric Badge
    Chapter 19 Improved Ultrafiltration Method to Measure Drug Release from Nanomedicines Utilizing a Stable Isotope Tracer
  21. Altmetric Badge
    Chapter 20 Designing an In Vivo Efficacy Study of Nanomedicines for Preclinical Tumor Growth Inhibition
Attention for Chapter 5: PEG Quantitation Using Reversed-Phase High-Performance Liquid Chromatography and Charged Aerosol Detection
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
PEG Quantitation Using Reversed-Phase High-Performance Liquid Chromatography and Charged Aerosol Detection
Chapter number 5
Book title
Characterization of Nanoparticles Intended for Drug Delivery
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7352-1_5
Pubmed ID
Book ISBNs
978-1-4939-7350-7, 978-1-4939-7352-1
Authors

Mackensie C. Smith, Jeffrey D. Clogston, Smith, Mackensie C., Clogston, Jeffrey D.

Abstract

This chapter describes a method for the quantitation of polyethylene glycol (PEG) in PEGylated colloidal gold nanoparticles using a reversed-phase high-performance liquid chromatography (RP-HPLC) with charged aerosol detection. The method can be used to calculate the total PEG on the nanoparticle, as well as the bound and free unbound PEG fractions after a simple centrifugation step. This is a significant distinction as the bound PEG fraction affects biocompatibility, circulation time, and overall nanoparticle efficacy. PEG quantitation can be achieved through two methods, one involving the dissolution of colloidal gold nanoparticles by potassium cyanide (KCN) and the other by displacement of PEG by dithiothreitol (DTT). The methods outlined herein were applied to 30 nm colloidal gold grafted with 20 kDa PEG, but they can be easily adapted to any size colloidal gold nanoparticle and PEG chain length.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 20%
Researcher 2 20%
Student > Ph. D. Student 1 10%
Student > Doctoral Student 1 10%
Professor > Associate Professor 1 10%
Other 0 0%
Unknown 3 30%
Readers by discipline Count As %
Chemistry 2 20%
Pharmacology, Toxicology and Pharmaceutical Science 1 10%
Biochemistry, Genetics and Molecular Biology 1 10%
Engineering 1 10%
Unknown 5 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 November 2018.
All research outputs
#18,603,172
of 23,043,346 outputs
Outputs from Methods in molecular biology
#7,992
of 13,194 outputs
Outputs of similar age
#330,621
of 442,416 outputs
Outputs of similar age from Methods in molecular biology
#950
of 1,499 outputs
Altmetric has tracked 23,043,346 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,194 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,416 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,499 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.