↓ Skip to main content

Characterization of Nanoparticles Intended for Drug Delivery

Overview of attention for book
Cover of 'Characterization of Nanoparticles Intended for Drug Delivery'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Evaluating Nanomedicines: Obstacles and Advancements
  3. Altmetric Badge
    Chapter 2 Detection of Bacterial Contamination in Nanoparticle Formulations by Agar Plate Test
  4. Altmetric Badge
    Chapter 3 Considerations and Some Practical Solutions to Overcome Nanoparticle Interference with LAL Assays and to Avoid Endotoxin Contamination in Nanoformulations
  5. Altmetric Badge
    Chapter 4 Elemental Analysis in Biological Matrices Using ICP-MS
  6. Altmetric Badge
    Chapter 5 PEG Quantitation Using Reversed-Phase High-Performance Liquid Chromatography and Charged Aerosol Detection
  7. Altmetric Badge
    Chapter 6 Quantitation of Surface Coating on Nanoparticles Using Thermogravimetric Analysis
  8. Altmetric Badge
    Chapter 7 Immunoelectron Microscopy for Visualization of Nanoparticles
  9. Altmetric Badge
    Chapter 8 Imaging of Liposomes by Transmission Electron Microscopy
  10. Altmetric Badge
    Chapter 9 Updated Method for In Vitro Analysis of Nanoparticle Hemolytic Properties
  11. Altmetric Badge
    Chapter 10 In Vitro Assessment of Nanoparticle Effects on Blood Coagulation
  12. Altmetric Badge
    Chapter 11 In Vitro Analysis of Nanoparticle Effects on the Zymosan Uptake by Phagocytic Cells
  13. Altmetric Badge
    Chapter 12 Assessing NLRP3 Inflammasome Activation by Nanoparticles
  14. Altmetric Badge
    Chapter 13 Analysis of Complement Activation by Nanoparticles
  15. Altmetric Badge
    Chapter 14 Methods for Analysis of Nanoparticle Immunosuppressive Properties In Vitro and In Vivo
  16. Altmetric Badge
    Chapter 15 Analysis of Pro-inflammatory Cytokine and Type II Interferon Induction by Nanoparticles
  17. Altmetric Badge
    Chapter 16 Analysis of Nanoparticle-Adjuvant Properties In Vivo
  18. Altmetric Badge
    Chapter 17 In Vitro and In Vivo Methods for Analysis of Nanoparticle Potential to Induce Delayed-Type Hypersensitivity Reactions
  19. Altmetric Badge
    Chapter 18 Autophagy Monitoring Assay II: Imaging Autophagy Induction in LLC-PK1 Cells Using GFP-LC3 Protein Fusion Construct
  20. Altmetric Badge
    Chapter 19 Improved Ultrafiltration Method to Measure Drug Release from Nanomedicines Utilizing a Stable Isotope Tracer
  21. Altmetric Badge
    Chapter 20 Designing an In Vivo Efficacy Study of Nanomedicines for Preclinical Tumor Growth Inhibition
Attention for Chapter 14: Methods for Analysis of Nanoparticle Immunosuppressive Properties In Vitro and In Vivo
Altmetric Badge

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Methods for Analysis of Nanoparticle Immunosuppressive Properties In Vitro and In Vivo
Chapter number 14
Book title
Characterization of Nanoparticles Intended for Drug Delivery
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7352-1_14
Pubmed ID
Book ISBNs
978-1-4939-7350-7, 978-1-4939-7352-1
Authors

Timothy M. Potter, Barry W. Neun, Marina A. Dobrovolskaia, Potter, Timothy M., Neun, Barry W., Dobrovolskaia, Marina A.

Abstract

Adverse drug effects on the immune system function represent a significant concern in the pharmaceutical industry, because 10-20% of the drug withdrawal from the market is accounted to immunotoxicity. Immunosuppression is one such adverse effect. The traditional immune function test used to estimate materials' immunosuppression is a T-cell-dependent antibody response (TDAR). This method involves a 28 day in vivo study evaluating the animal's antibody titer to a known antigen (KLH) with and without challenge. Due to the limited quantities of novel drug candidates, an in vitro method called human leukocyte activation (HuLa) assay has been developed to substitute the traditional TDAR assay during early preclinical development. In this test, leukocytes isolated from healthy donors vaccinated with the current year's flu vaccine are incubated with Fluzone in the presence or absence of a test material. The antigen-specific leukocyte proliferation is then measured by ELISA analyzing incorporation of BrdU into DNA of the proliferating cells. Here, we describe the experimental procedures for investigating immunosuppressive properties of nanoparticles by both TDAR and HuLa assays, discuss the in vitro-in vivo correlation of these methods, and show a case study using the iron oxide nanoparticle formulation, Feraheme.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 30%
Student > Ph. D. Student 2 20%
Student > Bachelor 1 10%
Student > Doctoral Student 1 10%
Professor > Associate Professor 1 10%
Other 0 0%
Unknown 2 20%
Readers by discipline Count As %
Chemical Engineering 1 10%
Nursing and Health Professions 1 10%
Immunology and Microbiology 1 10%
Medicine and Dentistry 1 10%
Unknown 6 60%