↓ Skip to main content

Exercise-based cardiac rehabilitation for adults with stable angina

Overview of attention for article published in Cochrane database of systematic reviews, February 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
42 tweeters

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
93 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exercise-based cardiac rehabilitation for adults with stable angina
Published in
Cochrane database of systematic reviews, February 2018
DOI 10.1002/14651858.cd012786.pub2
Pubmed ID
Authors

Linda Long, Lindsey Anderson, Alice M Dewhirst, Jingzhou He, Charlene Bridges, Manish Gandhi, Rod S Taylor

Abstract

A previous Cochrane review has shown that exercise-based cardiac rehabilitation (CR) can benefit myocardial infarction and post-revascularisation patients. However, the impact on stable angina remains unclear and guidance is inconsistent. Whilst recommended in the guidelines of American College of Cardiology/American Heart Association and the European Society of Cardiology, in the UK the National Institute for Health and Care Excellence (NICE) states that there is "no evidence to suggest that CR is clinically or cost-effective for managing stable angina". To assess the effects of exercise-based CR compared to usual care for adults with stable angina. We updated searches from the previous Cochrane review 'Exercise-based cardiac rehabilitation for patients with coronary heart disease' by searching the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, DARE, CINAHL and Web of Science on 2 October 2017. We searched two trials registers, and performed reference checking and forward-citation searching of all primary studies and review articles, to identify additional studies. We included randomised controlled trials (RCTs) with a follow-up period of at least six months, which compared structured exercise-based CR with usual care for people with stable angina. Two review authors independently assessed the risk of bias and extracted data according to the Cochrane Handbook for Systematic Reviews of Interventions. Two review authors also independently assessed the quality of the evidence using GRADE principles and we presented this information in a 'Summary of findings' table. Seven studies (581 participants) met our inclusion criteria. Trials had an intervention length of 6 weeks to 12 months and follow-up length of 6 to 12 months. The comparison group in all trials was usual care (without any form of structured exercise training or advice) or a no-exercise comparator. The mean age of participants within the trials ranged from 50 to 66 years, the majority of participants being male (range: 74% to 100%). In terms of risk of bias, the majority of studies were unclear about their generation of the randomisation sequence and concealment processes. One study was at high risk of detection bias as it did not blind its participants or outcome assessors, and two studies had a high risk of attrition bias due to the numbers of participants lost to follow-up. Two trials were at high risk of outcome reporting bias. Given the high risk of bias, small number of trials and participants, and concerns about applicability, we downgraded our assessments of the quality of the evidence using the GRADE tool.Due to the very low-quality of the evidence base, we are uncertain about the effect of exercise-based CR on all-cause mortality (risk ratio (RR) 1.01, 95% confidence interval (CI) 0.18 to 5.67; 195 participants; 3 studies; very low-quality evidence), acute myocardial infarction (RR 0.33, 95% CI 0.07 to 1.63; 254 participants; 3 studies; very low-quality evidence) and cardiovascular-related hospital admissions (RR 0.14, 95% CI 0.02 to 1.1; 101 participants; 1 study; very low-quality evidence). We found low-quality evidence that exercise-based CR may result in a small improvement in exercise capacity compared to control (standardised mean difference (SMD) 0.45, 95% CI 0.20 to 0.70; 267 participants; 5 studies, low-quality evidence). We were unable to draw conclusions about the impact of exercise-based CR on quality of life (angina frequency and emotional health-related quality-of-life score) and CR-related adverse events (e.g. skeletomuscular injury, cardiac arrhythmia), due to the very low quality of evidence. No data were reported on return to work. Due to the small number of trials and their small size, potential risk of bias and concerns about imprecision and lack of applicability, we are uncertain of the effects of exercise-based CR compared to control on mortality, morbidity, cardiovascular hospital admissions, adverse events, return to work and health-related quality of life in people with stable angina. Low-quality evidence indicates that exercise-based CR may result in a small increase in exercise capacity compared to usual care. High-quality, well-reported randomised trials are needed to assess the benefits and harms of exercise-based CR for adults with stable angina. Such trials need to collect patient-relevant outcomes, including clinical events and health-related quality of life. They should also assess cost-effectiveness, and recruit participants that are reflective of the real-world population of people with angina.

Twitter Demographics

The data shown below were collected from the profiles of 42 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 93 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 93 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 31 33%
Student > Master 19 20%
Student > Bachelor 16 17%
Student > Ph. D. Student 11 12%
Student > Doctoral Student 4 4%
Other 12 13%
Readers by discipline Count As %
Unspecified 38 41%
Nursing and Health Professions 22 24%
Medicine and Dentistry 16 17%
Sports and Recreations 5 5%
Psychology 3 3%
Other 9 10%

Attention Score in Context

This research output has an Altmetric Attention Score of 24. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 November 2018.
All research outputs
#632,002
of 13,015,441 outputs
Outputs from Cochrane database of systematic reviews
#2,085
of 10,445 outputs
Outputs of similar age
#27,814
of 345,477 outputs
Outputs of similar age from Cochrane database of systematic reviews
#57
of 210 outputs
Altmetric has tracked 13,015,441 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,445 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.5. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 345,477 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 210 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.