↓ Skip to main content

Estimating abundance of an open population with an N‐mixture model using auxiliary data on animal movements

Overview of attention for article published in Ecological Applications, April 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (69th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
10 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
86 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Estimating abundance of an open population with an N‐mixture model using auxiliary data on animal movements
Published in
Ecological Applications, April 2018
DOI 10.1002/eap.1692
Pubmed ID
Authors

Alison C. Ketz, Therese L. Johnson, Ryan J. Monello, John A. Mack, Janet L. George, Benjamin R. Kraft, Margaret A. Wild, Mevin B. Hooten, N. Thompson Hobbs

Abstract

Accurate assessment of abundance forms a central challenge in population ecology and wildlife manage Many statistical techniques have been developed to estimate population sizes because populations change over time and space, and to correct for the bias resulting from animals that are present in a study area but not observed. The mobility of individuals makes it difficult to design sampling procedures that account for movement into and out of areas with fixed jurisdictional boundaries. Aerial surveys are the gold standard used to obtain data of large mobile species in geographic regions with harsh terrain, but these surveys can be prohibitively expensive and dangerous. Estimating abundance with ground based census methods have practical advantages, but it can be difficult to simultaneously account for temporary emigration and observer error to avoid biased results. Contemporary research in population ecology increasingly relies on telemetry observations of the states and locations of individuals to gain insight on vital rates, animal movements, and population abundance. Analytical models that use observations of movements to improve estimates of abundance have not been developed. Here we build upon existing multi-state mark recapture methods using a hierarchical N-mixture model with multiple sources of data, including telemetry data on locations of individuals, to improve estimates of population sizes. We used a state-space approach to model animal movements to approximate the number of marked animals present within the study area at any observation period, thereby accounting for a frequently changing number of marked individuals. We illustrate the approach using data on a population of elk (Cervus elaphus nelsoni) in Northern Colorado, USA. We demonstrate substantial improvement compared to existing abundance estimation methods and corroborate our results from the ground based surveys with estimates from aerial surveys during the same seasons. We develop a hierarchical Bayesian N-mixture model using multiple sources of data on abundance, movement and survival to estimate the population size of a mobile species that uses remote conservation areas. The model improves accuracy of inference relative to previous methods for estimating abundance of open populations. This article is protected by copyright. All rights reserved.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 86 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 86 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 25 29%
Researcher 20 23%
Other 6 7%
Student > Bachelor 4 5%
Student > Master 4 5%
Other 10 12%
Unknown 17 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 42 49%
Environmental Science 15 17%
Unspecified 2 2%
Computer Science 1 1%
Earth and Planetary Sciences 1 1%
Other 2 2%
Unknown 23 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 February 2022.
All research outputs
#6,036,702
of 24,294,745 outputs
Outputs from Ecological Applications
#1,431
of 3,309 outputs
Outputs of similar age
#98,998
of 330,582 outputs
Outputs of similar age from Ecological Applications
#30
of 55 outputs
Altmetric has tracked 24,294,745 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,309 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.6. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,582 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 55 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.