↓ Skip to main content

Complete genome sequence of Pseudomonas alcaliphila JAB1 (=DSM 26533), a versatile degrader of organic pollutants

Overview of attention for article published in Environmental Microbiome, February 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Complete genome sequence of Pseudomonas alcaliphila JAB1 (=DSM 26533), a versatile degrader of organic pollutants
Published in
Environmental Microbiome, February 2018
DOI 10.1186/s40793-017-0306-7
Pubmed ID
Authors

Jakub Ridl, Jachym Suman, Serena Fraraccio, Miluse Hradilova, Michal Strejcek, Tomas Cajthaml, Andrea Zubrova, Tomas Macek, Hynek Strnad, Ondrej Uhlik

Abstract

In this study, following its isolation from contaminated soil, the genomic sequence of Pseudomonas alcaliphila strain JAB1 (=DSM 26533), a biphenyl-degrading bacterium, is reported and analyzed in relation to its extensive degradative capabilities. The P. alcaliphila JAB1 genome (GenBank accession no. CP016162) consists of a single 5.34 Mbp-long chromosome with a GC content of 62.5%. Gene function was assigned to 3816 of the 4908 predicted genes. The genome harbors a bph gene cluster, permitting degradation of biphenyl and many congeners of polychlorinated biphenyls (PCBs), a ben gene cluster, enabling benzoate and its derivatives to be degraded, and phe gene cluster, which permits phenol degradation. In addition, P. alcaliphila JAB1 is capable of cometabolically degrading cis-1,2-dichloroethylene (cDCE) when grown on phenol. The strain carries both catechol and protocatechuate branches of the β-ketoadipate pathway, which is used to funnel the pollutants to the central metabolism. Furthermore, we propose that clustering of MALDI-TOF MS spectra with closest phylogenetic relatives should be used when taxonomically classifying the isolated bacterium; this, together with 16S rRNA gene sequence and chemotaxonomic data analyses, enables more precise identification of the culture at the species level.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 19%
Student > Master 5 10%
Researcher 5 10%
Student > Doctoral Student 4 8%
Student > Bachelor 4 8%
Other 7 13%
Unknown 17 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 21%
Environmental Science 6 12%
Biochemistry, Genetics and Molecular Biology 6 12%
Veterinary Science and Veterinary Medicine 2 4%
Unspecified 2 4%
Other 7 13%
Unknown 18 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 February 2018.
All research outputs
#17,292,294
of 25,382,440 outputs
Outputs from Environmental Microbiome
#493
of 786 outputs
Outputs of similar age
#283,821
of 448,849 outputs
Outputs of similar age from Environmental Microbiome
#5
of 8 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 786 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 448,849 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.