↓ Skip to main content

Thin and Dense Solid-solid Heterojunction Formation Promoted by Crystal Growth in Flux on a Substrate

Overview of attention for article published in Scientific Reports, January 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

news
7 news outlets
blogs
1 blog
facebook
1 Facebook page

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Thin and Dense Solid-solid Heterojunction Formation Promoted by Crystal Growth in Flux on a Substrate
Published in
Scientific Reports, January 2018
DOI 10.1038/s41598-017-18250-9
Pubmed ID
Authors

Nobuyuki Zettsu, Hiromasa Shiiba, Hitoshi Onodera, Kazune Nemoto, Takeshi Kimijima, Kunio Yubuta, Masanobu Nakayama, Katsuya Teshima

Abstract

In this work, we demonstrate the direct growth of cubic Li5La3Nb2O12 crystal layer on the LiCoO2 substrate through the conversion of ultra-thin Nb substrate in molten LiOH flux. The initial thickness of the Nb layer determines that of the crystal layer. SEM and TEM observations reveal that the surface is densely covered with well-defined polyhedral crystals. Each crystal is connected to neighboring ones through the formation of tilted grain boundaries with Σ3 (2-1-1) = (1-21) symmetry which show small degradation in lithium ion conductivity comparing to that of bulk. Furthermore, the sub-phase formation at the interface is naturally mitigated during the growth since the formation of Nb2O5 thin film limits the whole reaction kinetics. Using the newly developed stacking approach for stacking solid electrolyte layer on the electrode layer, the grown crystal layer could be an ideal ceramic separator with a dense thin-interface for all-solid-state batteries.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 23%
Student > Master 3 12%
Student > Ph. D. Student 3 12%
Professor 2 8%
Other 1 4%
Other 2 8%
Unknown 9 35%
Readers by discipline Count As %
Materials Science 5 19%
Engineering 3 12%
Chemistry 3 12%
Energy 2 8%
Agricultural and Biological Sciences 2 8%
Other 1 4%
Unknown 10 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 60. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 February 2018.
All research outputs
#608,773
of 23,025,074 outputs
Outputs from Scientific Reports
#6,769
of 124,355 outputs
Outputs of similar age
#15,644
of 442,254 outputs
Outputs of similar age from Scientific Reports
#234
of 4,123 outputs
Altmetric has tracked 23,025,074 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 124,355 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 18.2. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,254 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 4,123 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.