↓ Skip to main content

Ghrelin for the management of cachexia associated with cancer

Overview of attention for article published in Cochrane database of systematic reviews, February 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
10 X users
patent
1 patent
facebook
1 Facebook page
wikipedia
1 Wikipedia page

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
268 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ghrelin for the management of cachexia associated with cancer
Published in
Cochrane database of systematic reviews, February 2018
DOI 10.1002/14651858.cd012229.pub2
Pubmed ID
Authors

Mahalaqua Nazli Khatib, Anuraj H Shankar, Richard Kirubakaran, Abhay Gaidhane, Shilpa Gaidhane, Padam Simkhada, Zahiruddin Quazi Syed

Abstract

Cancer sufferers are amongst the most malnourished of all the patient groups. Studies have shown that ghrelin, a gut hormone can be a potential therapeutic agent for cachexia (wasting syndrome) associated with cancer. A variety of mechanisms of action of ghrelin in people with cancer cachexia have been proposed. However, safety and efficacy of ghrelin for cancer-associated cachexia have not been systematically reviewed. The aim of this review was to assess whether ghrelin is associated with better food intake, body composition and survival than other options for adults with cancer cachexia. To assess the efficacy and safety of ghrelin in improving food intake, body composition and survival in people with cachexia associated with cancer. We searched CENTRAL, MEDLINE and Embase without language restrictions up to July 2017. We also searched for ongoing studies in trials registers, performed handsearching, checked bibliographic references of relevant articles and contacted authors and experts in the field to seek potentially relevant research. We applied no restrictions on language, date, or publication status. We included randomised controlled (parallel-group or cross-over) trials comparing ghrelin (any formulation or route of administration) with placebo or an active comparator in adults (aged 18 years and over) who met any of the international criteria for cancer cachexia. Two review authors independently assessed studies for eligibility. Two review authors then extracted data and assessed the risk of bias for individual studies using standard Cochrane methodology. For dichotomous variables, we planned to calculate risk ratio with 95% confidence intervals (CI) and for continuous data, we planned to calculate mean differences (MD) with 95% CI. We assessed the evidence using GRADE and created 'Summary of findings' tables. We screened 926 individual references and identified three studies that satisfied the inclusion criteria. Fifty-nine participants (37 men and 22 women) aged between 54 and 78 years were randomised initially, 47 participants completed the treatment. One study had a parallel design and two had a cross-over design. The studies included people with a variety of cancers and also differed in the dosage, route of administration, frequency and duration of treatment.One trial, which compared ghrelin with placebo, found that ghrelin improved food intake (very low-quality evidence) and had no adverse events (very low-quality evidence). Due to unavailability of data we were unable to report on comparisons for ghrelin versus no treatment or alternative experimental treatment modalities, or ghrelin in combination with other treatments or ghrelin analogues/ghrelin mimetics/ghrelin potentiators. Two studies compared a higher dose of ghrelin with a lower dose of ghrelin, however due to differences in study designs and great diversity in the treatment provided we did not pool the results. In both trials, food intake did not differ between participants on higher-dose and lower-dose ghrelin. None of the included studies assessed data on body weight. One study reported higher adverse events with a higher dose as compared to a lower dose of ghrelin.All studies were at high risk of attrition bias and bias for size of the study. Risk of bias in other domains was unclear or low.We rated the overall quality of the evidence for primary outcomes (food intake, body weight, adverse events) as very low. We downgraded the quality of the evidence due to lack of data, high or unclear risk of bias of the studies and small study size. There is insufficient evidence to be able to support or refute the use of ghrelin in people with cancer cachexia. Adequately powered randomised controlled trials focusing on evaluation of safety and efficacy of ghrelin in people with cancer cachexia is warranted.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 268 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 268 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 30 11%
Student > Bachelor 27 10%
Researcher 22 8%
Student > Ph. D. Student 20 7%
Other 15 6%
Other 45 17%
Unknown 109 41%
Readers by discipline Count As %
Medicine and Dentistry 63 24%
Nursing and Health Professions 30 11%
Social Sciences 11 4%
Biochemistry, Genetics and Molecular Biology 11 4%
Agricultural and Biological Sciences 8 3%
Other 24 9%
Unknown 121 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 January 2023.
All research outputs
#3,061,098
of 25,595,500 outputs
Outputs from Cochrane database of systematic reviews
#5,811
of 13,156 outputs
Outputs of similar age
#60,659
of 344,604 outputs
Outputs of similar age from Cochrane database of systematic reviews
#129
of 229 outputs
Altmetric has tracked 25,595,500 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,156 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.8. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 344,604 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 229 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.