↓ Skip to main content

OPERA models for predicting physicochemical properties and environmental fate endpoints

Overview of attention for article published in Journal of Cheminformatics, March 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

blogs
1 blog
twitter
26 X users
googleplus
1 Google+ user

Citations

dimensions_citation
333 Dimensions

Readers on

mendeley
239 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
OPERA models for predicting physicochemical properties and environmental fate endpoints
Published in
Journal of Cheminformatics, March 2018
DOI 10.1186/s13321-018-0263-1
Pubmed ID
Authors

Kamel Mansouri, Chris M. Grulke, Richard S. Judson, Antony J. Williams

Abstract

The collection of chemical structure information and associated experimental data for quantitative structure-activity/property relationship (QSAR/QSPR) modeling is facilitated by an increasing number of public databases containing large amounts of useful data. However, the performance of QSAR models highly depends on the quality of the data and modeling methodology used. This study aims to develop robust QSAR/QSPR models for chemical properties of environmental interest that can be used for regulatory purposes. This study primarily uses data from the publicly available PHYSPROP database consisting of a set of 13 common physicochemical and environmental fate properties. These datasets have undergone extensive curation using an automated workflow to select only high-quality data, and the chemical structures were standardized prior to calculation of the molecular descriptors. The modeling procedure was developed based on the five Organization for Economic Cooperation and Development (OECD) principles for QSAR models. A weighted k-nearest neighbor approach was adopted using a minimum number of required descriptors calculated using PaDEL, an open-source software. The genetic algorithms selected only the most pertinent and mechanistically interpretable descriptors (2-15, with an average of 11 descriptors). The sizes of the modeled datasets varied from 150 chemicals for biodegradability half-life to 14,050 chemicals for logP, with an average of 3222 chemicals across all endpoints. The optimal models were built on randomly selected training sets (75%) and validated using fivefold cross-validation (CV) and test sets (25%). The CV Q2 of the models varied from 0.72 to 0.95, with an average of 0.86 and an R2 test value from 0.71 to 0.96, with an average of 0.82. Modeling and performance details are described in QSAR model reporting format and were validated by the European Commission's Joint Research Center to be OECD compliant. All models are freely available as an open-source, command-line application called OPEn structure-activity/property Relationship App (OPERA). OPERA models were applied to more than 750,000 chemicals to produce freely available predicted data on the U.S. Environmental Protection Agency's CompTox Chemistry Dashboard.

X Demographics

X Demographics

The data shown below were collected from the profiles of 26 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 239 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 239 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 49 21%
Researcher 47 20%
Student > Master 20 8%
Other 15 6%
Student > Bachelor 13 5%
Other 33 14%
Unknown 62 26%
Readers by discipline Count As %
Chemistry 49 21%
Environmental Science 28 12%
Pharmacology, Toxicology and Pharmaceutical Science 17 7%
Computer Science 10 4%
Agricultural and Biological Sciences 8 3%
Other 49 21%
Unknown 78 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 25. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 October 2022.
All research outputs
#1,453,132
of 24,261,860 outputs
Outputs from Journal of Cheminformatics
#97
of 893 outputs
Outputs of similar age
#32,842
of 336,293 outputs
Outputs of similar age from Journal of Cheminformatics
#2
of 19 outputs
Altmetric has tracked 24,261,860 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 893 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.5. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,293 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.