↓ Skip to main content

DNA sequence and analysis of human chromosome 9

Overview of attention for article published in Nature, May 2004
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
2 X users
patent
1 patent
facebook
1 Facebook page
wikipedia
211 Wikipedia pages

Citations

dimensions_citation
113 Dimensions

Readers on

mendeley
147 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
DNA sequence and analysis of human chromosome 9
Published in
Nature, May 2004
DOI 10.1038/nature02465
Pubmed ID
Authors

S. J. Humphray, K. Oliver, A. R. Hunt, R. W. Plumb, J. E. Loveland, K. L. Howe, T. D. Andrews, S. Searle, S. E. Hunt, C. E. Scott, M. C. Jones, R. Ainscough, J. P. Almeida, K. D. Ambrose, R. I. S. Ashwell, A. K. Babbage, S. Babbage, C. L. Bagguley, J. Bailey, R. Banerjee, D. J. Barker, K. F. Barlow, K. Bates, H. Beasley, O. Beasley, C. P. Bird, S. Bray-Allen, A. J. Brown, J. Y. Brown, D. Burford, W. Burrill, J. Burton, C. Carder, N. P. Carter, J. C. Chapman, Y. Chen, G. Clarke, S. Y. Clark, C. M. Clee, S. Clegg, R. E. Collier, N. Corby, M. Crosier, A. T. Cummings, J. Davies, P. Dhami, M. Dunn, I. Dutta, L. W. Dyer, M. E. Earthrowl, L. Faulkner, C. J. Fleming, A. Frankish, J. A. Frankland, L. French, D. G. Fricker, P. Garner, J. Garnett, J. Ghori, J. G. R. Gilbert, C. Glison, D. V. Grafham, S. Gribble, C. Griffiths, S. Griffiths-Jones, R. Grocock, J. Guy, R. E. Hall, S. Hammond, J. L. Harley, E. S. I. Harrison, E. A. Hart, P. D. Heath, C. D. Henderson, B. L. Hopkins, P. J. Howard, P. J. Howden, E. Huckle, C. Johnson, D. Johnson, A. A. Joy, M. Kay, S. Keenan, J. K. Kershaw, A. M. Kimberley, A. King, A. Knights, G. K. Laird, C. Langford, S. Lawlor, D. A. Leongamornlert, M. Leversha, C. Lloyd, D. M. Lloyd, J. Lovell, S. Martin, M. Mashreghi-Mohammadi, L. Matthews, S. McLaren, K. E. McLay, A. McMurray, S. Milne, T. Nickerson, J. Nisbett, G. Nordsiek, A. V. Pearce, A. I. Peck, K. M. Porter, R. Pandian, S. Pelan, B. Phillimore, S. Povey, Y. Ramsey, V. Rand, M. Scharfe, H. K. Sehra, R. Shownkeen, S. K. Sims, C. D. Skuce, M. Smith, C. A. Steward, D. Swarbreck, N. Sycamore, J. Tester, A. Thorpe, A. Tracey, A. Tromans, D. W. Thomas, M. Wall, J. M. Wallis, A. P. West, S. L. Whitehead, D. L. Willey, S. A. Williams, L. Wilming, P. W. Wray, L. Young, J. L. Ashurst, A. Coulson, H. Blöcker, R. Durbin, J. E. Sulston, T. Hubbard, M. J. Jackson, D. R. Bentley, S. Beck, J. Rogers, I. Dunham

Abstract

Chromosome 9 is highly structurally polymorphic. It contains the largest autosomal block of heterochromatin, which is heteromorphic in 6-8% of humans, whereas pericentric inversions occur in more than 1% of the population. The finished euchromatic sequence of chromosome 9 comprises 109,044,351 base pairs and represents >99.6% of the region. Analysis of the sequence reveals many intra- and interchromosomal duplications, including segmental duplications adjacent to both the centromere and the large heterochromatic block. We have annotated 1,149 genes, including genes implicated in male-to-female sex reversal, cancer and neurodegenerative disease, and 426 pseudogenes. The chromosome contains the largest interferon gene cluster in the human genome. There is also a region of exceptionally high gene and G + C content including genes paralogous to those in the major histocompatibility complex. We have also detected recently duplicated genes that exhibit different rates of sequence divergence, presumably reflecting natural selection.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 147 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 2 1%
India 2 1%
United States 2 1%
United Kingdom 2 1%
Sweden 1 <1%
Israel 1 <1%
Netherlands 1 <1%
Spain 1 <1%
Russia 1 <1%
Other 0 0%
Unknown 134 91%

Demographic breakdown

Readers by professional status Count As %
Researcher 39 27%
Student > Ph. D. Student 18 12%
Student > Bachelor 15 10%
Professor 11 7%
Student > Master 11 7%
Other 33 22%
Unknown 20 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 59 40%
Biochemistry, Genetics and Molecular Biology 37 25%
Medicine and Dentistry 16 11%
Computer Science 4 3%
Unspecified 2 1%
Other 10 7%
Unknown 19 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 March 2024.
All research outputs
#4,448,551
of 24,907,378 outputs
Outputs from Nature
#56,318
of 96,203 outputs
Outputs of similar age
#9,339
of 62,698 outputs
Outputs of similar age from Nature
#153
of 351 outputs
Altmetric has tracked 24,907,378 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 96,203 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 102.0. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 62,698 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 351 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.