↓ Skip to main content

CpG Islands

Overview of attention for book
Cover of 'CpG Islands'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 CpG Islands: A Historical Perspective
  3. Altmetric Badge
    Chapter 2 Biochemical Identification of Nonmethylated DNA by BioCAP-Seq
  4. Altmetric Badge
    Chapter 3 Prediction of CpG Islands as an Intrinsic Clustering Property Found in Many Eukaryotic DNA Sequences and Its Relation to DNA Methylation
  5. Altmetric Badge
    Chapter 4 CpG Islands in Cancer: Heads, Tails, and Sides
  6. Altmetric Badge
    Chapter 5 Infinium DNA Methylation Microarrays on Formalin-Fixed, Paraffin-Embedded Samples
  7. Altmetric Badge
    Chapter 6 The Use of Methylation-Sensitive Multiplex Ligation-Dependent Probe Amplification for Quantification of Imprinted Methylation
  8. Altmetric Badge
    Chapter 7 The Pancancer DNA Methylation Trackhub: A Window to The Cancer Genome Atlas Epigenomics Data
  9. Altmetric Badge
    Chapter 8 Methylation-Sensitive Amplification Length Polymorphism (MS-AFLP) Microarrays for Epigenetic Analysis of Human Genomes
  10. Altmetric Badge
    Chapter 9 Genome-Wide Profiling of DNA Methyltransferases in Mammalian Cells
  11. Altmetric Badge
    Chapter 10 Experimental Design and Bioinformatic Analysis of DNA Methylation Data
  12. Altmetric Badge
    Chapter 11 Assay for Transposase Accessible Chromatin (ATAC-Seq) to Chart the Open Chromatin Landscape of Human Pancreatic Islets
  13. Altmetric Badge
    Chapter 12 Defining Regulatory Elements in the Human Genome Using Nucleosome Occupancy and Methylome Sequencing (NOMe-Seq)
  14. Altmetric Badge
    Chapter 13 Genome-Wide Mapping of Protein–DNA Interactions on Nascent Chromatin
  15. Altmetric Badge
    Chapter 14 Analysis of Chromatin Interactions Mediated by Specific Architectural Proteins in Drosophila Cells
  16. Altmetric Badge
    Chapter 15 High-Throughput Single-Cell RNA Sequencing and Data Analysis
  17. Altmetric Badge
    Chapter 16 Functional Insulator Scanning of CpG Islands to Identify Regulatory Regions of Promoters Using CRISPR
  18. Altmetric Badge
    Chapter 17 An Application-Directed, Versatile DNA FISH Platform for Research and Diagnostics
Attention for Chapter 17: An Application-Directed, Versatile DNA FISH Platform for Research and Diagnostics
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
An Application-Directed, Versatile DNA FISH Platform for Research and Diagnostics
Chapter number 17
Book title
CpG Islands
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7768-0_17
Pubmed ID
Book ISBNs
978-1-4939-7767-3, 978-1-4939-7768-0
Authors

Eleni Gelali, Joaquin Custodio, Gabriele Girelli, Erik Wernersson, Nicola Crosetto, Magda Bienko

Abstract

DNA fluorescence in situ hybridization (DNA FISH) has emerged as a powerful microscopy technique that allows a unique view into the composition and arrangement of the genetic material in its natural context-be it the cell nucleus in interphase, or chromosomes in metaphase spreads. The core principle of DNA FISH is the ability of fluorescently labeled DNA probes (either double- or single-stranded DNA fragments) to bind to their complementary sequences in situ in cells or tissues, revealing the location of their target as fluorescence signals detectable with a fluorescence microscope. Numerous variants and improvements of the original DNA FISH method as well as a vast repertoire of applications have been described since its inception more than 4 decades ago. In recent years, the development of many new fluorescent dyes together with drastic advancements in methods for probe generation (Boyle et al., Chromosome Res 19:901-909, 2011; Beliveau et al., Proc Natl Acad Sci U S A 109:21301-21306, 2012; Bienko et al., Nat Methods 10:122-124, 2012), as well as improvements in the resolution of microscopy technologies, have boosted the number of DNA FISH applications, particularly in the field of genome architecture (Markaki et al., Bioessays 34:412-426, 2012; Beliveau et al., Nat Commun 6:7147, 2015). However, despite these remarkable steps forward, choosing which type of DNA FISH sample preparation protocol, probe design, hybridization procedure, and detection method is best suited for a given application remains still challenging for many research labs, preventing a more widespread use of this powerful technology. Here, we present a comprehensive platform to help researchers choose which DNA FISH protocol is most suitable for their particular application. In addition, we describe computational pipelines that can be implemented for efficient DNA FISH probe design and for signal quantification. Our goal is to make DNA FISH a versatile and streamlined technique that can be easily implemented by both research and diagnostic labs.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 18%
Other 3 14%
Researcher 3 14%
Professor > Associate Professor 2 9%
Student > Bachelor 1 5%
Other 2 9%
Unknown 7 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 41%
Agricultural and Biological Sciences 3 14%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Environmental Science 1 5%
Neuroscience 1 5%
Other 0 0%
Unknown 7 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 May 2019.
All research outputs
#20,472,403
of 23,031,582 outputs
Outputs from Methods in molecular biology
#9,955
of 13,177 outputs
Outputs of similar age
#378,224
of 442,391 outputs
Outputs of similar age from Methods in molecular biology
#1,194
of 1,499 outputs
Altmetric has tracked 23,031,582 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,177 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,391 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,499 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.