↓ Skip to main content

Pathogen-Host Interactions: Antigenic Variation v. Somatic Adaptations

Overview of attention for book
Attention for Chapter 6: Somatic and Germline Diversification of a Putative Immunoreceptor within One Phylum: Dscam in Arthropods.
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (76th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Somatic and Germline Diversification of a Putative Immunoreceptor within One Phylum: Dscam in Arthropods.
Chapter number 6
Book title
Pathogen-Host Interactions: Antigenic Variation v. Somatic Adaptations
Published in
Results and problems in cell differentiation, January 2015
DOI 10.1007/978-3-319-20819-0_6
Pubmed ID
Book ISBNs
978-3-31-920818-3, 978-3-31-920819-0
Authors

Brites, Daniela, Du Pasquier, Louis, Daniela Brites, Louis Du Pasquier

Abstract

Arthropod Dscam, the homologue of the human Down Syndrome cell adhesion molecule, is a receptor used by the nervous and immune systems. Unlike in vertebrates, evolutionary pressure has selected and maintained a vast Dscam diversity of isoforms, known to specifying neuronal identity during the nervous system differentiation. This chapter examines the different modes of Dscam diversification in the context of arthropods' evolution and that of their immune system, where its role is controversial.In the single Dscam gene of insects and crustaceans, mutually exclusive alternative splicing affects three clusters of duplicated exons encoding the variable parts of the receptor. The Dscam gene produces over 10,000 isoforms. In the more basal arthropods such as centipedes, Dscam diversity results from a combination of many germline genes (over 80) with, in about half of those, the possibility of alternative splicing affecting only one exon cluster. In the even more basal arthropods, such as chelicerates, no splicing possibility is detected, but there exist dozens of germline Dscam genes. Compared to controlling the expression of multiple germline genes, the somatic mutually alternative splicing within a single gene may offer a simplified way of expressing a large Dscam repertoire. Expressed by hemocytes, Dscam is considered a phagocytic receptor but is also encountered in solution. More information is necessary about its binding to pathogens, its role in phagocytosis, its possible role in specifying hemocyte identity, its kinetics of expression, and the regulation of its RNA splicing to understand how its diversity is linked to immunity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 20%
Researcher 3 20%
Student > Bachelor 2 13%
Student > Ph. D. Student 1 7%
Professor 1 7%
Other 1 7%
Unknown 4 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 33%
Agricultural and Biological Sciences 5 33%
Medicine and Dentistry 1 7%
Unknown 4 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 April 2016.
All research outputs
#14,431,072
of 23,577,654 outputs
Outputs from Results and problems in cell differentiation
#75
of 215 outputs
Outputs of similar age
#185,490
of 356,631 outputs
Outputs of similar age from Results and problems in cell differentiation
#4
of 17 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 215 research outputs from this source. They receive a mean Attention Score of 2.2. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 356,631 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 76% of its contemporaries.