↓ Skip to main content

Hypoxia and Exercise

Overview of attention for book
Cover of 'Hypoxia and Exercise'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 A Tribute to John Burden West
  3. Altmetric Badge
    Chapter 2 Adventures in High-Altitude Physiology
  4. Altmetric Badge
    Chapter 3 Exercise induced arterial hypoxemia: the role of ventilation-perfusion inequality and pulmonary diffusion limitation.
  5. Altmetric Badge
    Chapter 4 Intrapulmonary Shunt During Normoxic and Hypoxic Exercise in Healthy Humans
  6. Altmetric Badge
    Chapter 5 Exercise-induced arterial hypoxemia: consequences for locomotor muscle fatigue.
  7. Altmetric Badge
    Chapter 6 Mechanisms of Sleep Apnea at Altitude
  8. Altmetric Badge
    Chapter 7 Control of cerebral blood flow during sleep and the effects of hypoxia.
  9. Altmetric Badge
    Chapter 8 Neural consequences of sleep disordered breathing: the role of intermittent hypoxia.
  10. Altmetric Badge
    Chapter 9 Finding the Genes Underlying Adaptation to Hypoxia Using Genomic Scans for Genetic Adaptation and Admixture Mapping
  11. Altmetric Badge
    Chapter 10 An Evolutionary Model for Identifying Genetic Adaptation to High Altitude
  12. Altmetric Badge
    Chapter 11 Hypoxic Preconditioning and Erythropoietin Protect Retinal Neurons from Degeneration
  13. Altmetric Badge
    Chapter 12 Blocking Stress Signaling Pathways with Cell Permeable Peptides
  14. Altmetric Badge
    Chapter 13 JNK Pathway as Therapeutic Target to Prevent Degeneration in the Central Nervous System
  15. Altmetric Badge
    Chapter 14 Salvage Of Ischemic Myocardium: A Focus on JNK
  16. Altmetric Badge
    Chapter 15 Mitochondrial Reactive Oxygen Species are Required for Hypoxic HIFα Stabilization
  17. Altmetric Badge
    Chapter 16 Hypoxia-Induced Gene Activity in Disused Oxidative Muscle
  18. Altmetric Badge
    Chapter 17 Role of the Red Blood Cell in Nitric Oxide Homeostasis and Hypoxic Vasodilation
  19. Altmetric Badge
    Chapter 18 Expression of the Heterotrimeric G Protein Gi and ATP Release are Impaired in Erythrocytes of Humans with Diabetes Mellitus
  20. Altmetric Badge
    Chapter 19 Red Blood Cells and Hemoglobin in Hypoxic Pulmonary Vasoconstriction
  21. Altmetric Badge
    Chapter 20 Dose-Response of Altitude Training: How Much Altitude is Enough?
  22. Altmetric Badge
    Chapter 21 The eye at altitude.
  23. Altmetric Badge
    Chapter 22 Lake Louise Consensus Methods for Measuring the Hypoxic Ventilatory Response
  24. Altmetric Badge
    Chapter 23 Pulmonary Hypertension in High-Altitude Dwellers: Novel Mechanisms, Unsuspected Predisposing Factors
  25. Altmetric Badge
    Chapter 24 Gene Hunting in Hypoxia and Exercise
Attention for Chapter 21: The eye at altitude.
Altmetric Badge

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
The eye at altitude.
Chapter number 21
Book title
Hypoxia and Exercise
Published in
Advances in experimental medicine and biology, January 2006
DOI 10.1007/978-0-387-34817-9_21
Pubmed ID
Book ISBNs
978-0-387-34816-2, 978-0-387-34817-9
Authors

Morris, Daniel S, Somner, John, Donald, Michael J, McCormick, Ian J C, Bourne, Rupert R A, Huang, Suber S, Aspinall, Peter, Dhillon, Baljean, Daniel S Morris, John Somner, Michael J Donald, Ian J C McCormick, Rupert R A Bourne, Suber S Huang, Peter Aspinall, Baljean Dhillon

Abstract

High altitude retinopathy (HAR) was first described in 1969 as engorgement of retinal veins with occasional papilloedema and vitreous hemorrhage. Since then various studies have attempted to define the incidence, etiology and significance of this phenomenon, usually with small numbers of subjects. Recently studies on relatively large groups of subjects in Nepal, Bolivia and Tibet have confirmed that the retinal vasculature becomes engorged and tortuous in all lowlanders ascending above 2500m. Sometimes this leads to hemorrhages, cotton wool spots and papilloedema, which is the pathological state better known as high altitude retinopathy. These studies have also shown a significant change in both corneal thickness and intraocular pressure at altitude. The retinal blood vessels are the only directly observable vascular system in the human body and also supply some of the most oxygen-demanding tissue, the photoreceptors of the retina. New techniques are being applied in both hypobaric chamber and field expeditions to observe changes in retinal function during conditions of hypobaric hypoxia. This work allows better advice to be given to lowlanders traveling to altitude either if they have pre-existing ocular conditions or if they suffer from visual problems whilst at altitude. This especially applies to the effect of altitude on refractive eye surgery and results of recent studies will be discussed so that physicians can advise their patients using the latest evidence. Retinal hypoxia at sea level accounts for the developed world's largest cause of blindness, diabetic retinopathy. The investigation of retinal response to hypobaric hypoxia in healthy subjects may open new avenues for treatment of this debilitating disease.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 3%
United States 1 3%
Unknown 37 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 21%
Student > Bachelor 6 15%
Student > Ph. D. Student 5 13%
Student > Postgraduate 4 10%
Professor 4 10%
Other 10 26%
Unknown 2 5%
Readers by discipline Count As %
Medicine and Dentistry 20 51%
Agricultural and Biological Sciences 4 10%
Social Sciences 3 8%
Nursing and Health Professions 1 3%
Business, Management and Accounting 1 3%
Other 5 13%
Unknown 5 13%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 October 2016.
All research outputs
#10,744,152
of 13,505,974 outputs
Outputs from Advances in experimental medicine and biology
#1,885
of 3,262 outputs
Outputs of similar age
#207,171
of 290,777 outputs
Outputs of similar age from Advances in experimental medicine and biology
#13
of 20 outputs
Altmetric has tracked 13,505,974 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,262 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 290,777 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.