↓ Skip to main content

Hypoxia and Exercise

Overview of attention for book
Cover of 'Hypoxia and Exercise'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 A Tribute to John Burden West
  3. Altmetric Badge
    Chapter 2 Adventures in High-Altitude Physiology
  4. Altmetric Badge
    Chapter 3 Exercise induced arterial hypoxemia: the role of ventilation-perfusion inequality and pulmonary diffusion limitation.
  5. Altmetric Badge
    Chapter 4 Intrapulmonary Shunt During Normoxic and Hypoxic Exercise in Healthy Humans
  6. Altmetric Badge
    Chapter 5 Exercise-induced arterial hypoxemia: consequences for locomotor muscle fatigue.
  7. Altmetric Badge
    Chapter 6 Mechanisms of Sleep Apnea at Altitude
  8. Altmetric Badge
    Chapter 7 Control of cerebral blood flow during sleep and the effects of hypoxia.
  9. Altmetric Badge
    Chapter 8 Neural consequences of sleep disordered breathing: the role of intermittent hypoxia.
  10. Altmetric Badge
    Chapter 9 Finding the Genes Underlying Adaptation to Hypoxia Using Genomic Scans for Genetic Adaptation and Admixture Mapping
  11. Altmetric Badge
    Chapter 10 An Evolutionary Model for Identifying Genetic Adaptation to High Altitude
  12. Altmetric Badge
    Chapter 11 Hypoxic Preconditioning and Erythropoietin Protect Retinal Neurons from Degeneration
  13. Altmetric Badge
    Chapter 12 Blocking Stress Signaling Pathways with Cell Permeable Peptides
  14. Altmetric Badge
    Chapter 13 JNK Pathway as Therapeutic Target to Prevent Degeneration in the Central Nervous System
  15. Altmetric Badge
    Chapter 14 Salvage Of Ischemic Myocardium: A Focus on JNK
  16. Altmetric Badge
    Chapter 15 Mitochondrial Reactive Oxygen Species are Required for Hypoxic HIFα Stabilization
  17. Altmetric Badge
    Chapter 16 Hypoxia-Induced Gene Activity in Disused Oxidative Muscle
  18. Altmetric Badge
    Chapter 17 Role of the Red Blood Cell in Nitric Oxide Homeostasis and Hypoxic Vasodilation
  19. Altmetric Badge
    Chapter 18 Expression of the Heterotrimeric G Protein Gi and ATP Release are Impaired in Erythrocytes of Humans with Diabetes Mellitus
  20. Altmetric Badge
    Chapter 19 Red Blood Cells and Hemoglobin in Hypoxic Pulmonary Vasoconstriction
  21. Altmetric Badge
    Chapter 20 Dose-Response of Altitude Training: How Much Altitude is Enough?
  22. Altmetric Badge
    Chapter 21 The eye at altitude.
  23. Altmetric Badge
    Chapter 22 Lake Louise Consensus Methods for Measuring the Hypoxic Ventilatory Response
  24. Altmetric Badge
    Chapter 23 Pulmonary Hypertension in High-Altitude Dwellers: Novel Mechanisms, Unsuspected Predisposing Factors
  25. Altmetric Badge
    Chapter 24 Gene Hunting in Hypoxia and Exercise
Attention for Chapter 7: Control of cerebral blood flow during sleep and the effects of hypoxia.
Altmetric Badge

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Control of cerebral blood flow during sleep and the effects of hypoxia.
Chapter number 7
Book title
Hypoxia and Exercise
Published in
Advances in experimental medicine and biology, January 2006
DOI 10.1007/978-0-387-34817-9_7
Pubmed ID
Book ISBNs
978-0-387-34816-2, 978-0-387-34817-9
Authors

Corfield, Douglas R, Meadows, Guy E, Douglas R. Corfield, Guy E. Meadows, Corfield, Douglas R., Meadows, Guy E.

Abstract

During wakefulness, cerebral blood flow (CBF) is closely coupled to regional cerebral metabolism; however CBF is also strongly modulated by breathing, increasing in response to both hypercapnia and hypoxia. During stage III/IV non-rapid eye (NREM) sleep, cerebral metabolism and CBF decrease whilst the partial pressure of arterial CO2 increases due to a reduction in alveolar ventilation. The reduction in CBF during NREM sleep therefore occurs despite a relative state of hypercapnia. We have used transcranial Doppler ultrasound to determine middle cerebral artery velocity, as an index of CBF, and have determined that NREM sleep is associated with a reduction in the cerebrovascular response to hypercapnia. This reduction in reactivity would, at least in part, allow the observed reductions in CBF in this state. Similarly, we have observed that the CBF response to hypoxia is absent during stage III/IV NREM sleep. Nocturnal hypoxia and hypercapnia are major pathogenic factor associated with cardio-respiratory diseases. These marked changes in cerebrovascular control that occur during sleep suggest that the cerebral circulation may be particularly vulnerable to cardio-respiratory insults during this period.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 6%
Spain 1 6%
Canada 1 6%
Unknown 13 81%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 31%
Professor > Associate Professor 3 19%
Student > Postgraduate 2 13%
Student > Ph. D. Student 2 13%
Student > Master 1 6%
Other 2 13%
Unknown 1 6%
Readers by discipline Count As %
Medicine and Dentistry 6 38%
Agricultural and Biological Sciences 3 19%
Psychology 2 13%
Engineering 2 13%
Neuroscience 1 6%
Other 0 0%
Unknown 2 13%