↓ Skip to main content

Clinical Applications of Mass Spectrometry in Biomolecular Analysis

Overview of attention for book
Cover of 'Clinical Applications of Mass Spectrometry in Biomolecular Analysis'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Mass Spectrometry in Clinical Laboratory: Applications in Biomolecular Analysis
  3. Altmetric Badge
    Chapter 2 Quantification of Free Carnitine and Acylcarnitines in Plasma or Serum Using HPLC/MS/MS
  4. Altmetric Badge
    Chapter 3 Quantification of Arginine and Its Methylated Derivatives in Plasma by High-Performance Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)
  5. Altmetric Badge
    Chapter 4 Quantitation of Albumin in Urine by Liquid Chromatography Tandem Mass Spectrometry
  6. Altmetric Badge
    Chapter 5 Quantitation of Aldosterone in Serum or Plasma Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
  7. Altmetric Badge
    Chapter 6 Quantification of Five Clinically Important Amino Acids by HPLC-Triple TOF™ 5600 Based on Pre-column Double Derivatization Method
  8. Altmetric Badge
    Chapter 7 Sensitive, Simple, and Robust Nano-Liquid Chromatography-Mass Spectrometry Method for Amyloid Protein Subtyping
  9. Altmetric Badge
    Chapter 8 Quantitation of Ubiquinone (Coenzyme Q 10 ) in Serum/Plasma Using Liquid Chromatography Electrospray Tandem Mass Spectrometry (ESI-LC-MS/MS)
  10. Altmetric Badge
    Chapter 9 Quantitative Analysis of Salivary Cortisol Using LC-MS/MS
  11. Altmetric Badge
    Chapter 10 Quantification of Dihydroxyacetone Phosphate (DHAP) in Human Red Blood Cells by HPLC-TripleTOF 5600™ Mass Spectrometer
  12. Altmetric Badge
    Chapter 11 Simultaneous Quantitation of Estradiol and Estrone in Serum Using Liquid Chromatography Mass Spectrometry
  13. Altmetric Badge
    Chapter 12 Direct Measurement of Free Estradiol in Human Serum and Plasma by Equilibrium Dialysis-Liquid Chromatography-Tandem Mass Spectrometry
  14. Altmetric Badge
    Chapter 13 Quantification of γ-Aminobutyric Acid in Cerebrospinal Fluid Using Liquid Chromatography-Electrospray Tandem Mass Spectrometry
  15. Altmetric Badge
    Chapter 14 Quantitation of Insulin Analogues in Serum Using Immunoaffinity Extraction, Liquid Chromatography, and Tandem Mass Spectrometry
  16. Altmetric Badge
    Chapter 15 Quantitation of Insulin-Like Growth Factor 1 in Serum by Liquid Chromatography High Resolution Accurate-Mass Mass Spectrometry
  17. Altmetric Badge
    Chapter 16 Quantitation of Free Metanephrines in Plasma by Liquid Chromatography-Tandem Mass Spectrometry
  18. Altmetric Badge
    Chapter 17 Quantification of Metanephrine and Normetanephrine in Urine Using Liquid Chromatography-Tandem Mass Spectrometry
  19. Altmetric Badge
    Chapter 18 High-Throughput Analysis of Methylmalonic Acid in Serum, Plasma, and Urine by LC-MS/MS. Method for Analyzing Isomers Without Chromatographic Separation
  20. Altmetric Badge
    Chapter 19 Quantitation of 5-Methyltetrahydrofolate in Cerebrospinal Fluid Using Liquid Chromatography-Electrospray Tandem Mass Spectrometry
  21. Altmetric Badge
    Chapter 20 Quantitative Organic Acids in Urine by Two Dimensional Gas Chromatography-Time of Flight Mass Spectrometry (GCxGC-TOFMS)
  22. Altmetric Badge
    Chapter 21 High Sensitivity Measurement of Pancreatic Polypeptide and Its Variant in Serum and Plasma by LC-MS/MS
  23. Altmetric Badge
    Chapter 22 Quantitation of Parathyroid Hormone in Serum or Plasma by Liquid Chromatography-Tandem Mass Spectrometry
  24. Altmetric Badge
    Chapter 23 Determination of Phenylalanine and Tyrosine by High Performance Liquid Chromatography-Tandem Mass Spectrometry
  25. Altmetric Badge
    Chapter 24 Urine Purine Metabolite Determination by UPLC-Tandem Mass Spectrometry.
  26. Altmetric Badge
    Chapter 25 Urine Pyrimidine Metabolite Determination by HPLC Tandem Mass Spectrometry
  27. Altmetric Badge
    Chapter 26 Quantitation of Plasma Renin Activity in Plasma Using Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS)
  28. Altmetric Badge
    Chapter 27 Quantitation of S-Adenosylmethionine and S-Adenosylhomocysteine in Plasma Using Liquid Chromatography-Electrospray Tandem Mass Spectrometry
  29. Altmetric Badge
    Chapter 28 A Simple, High-Throughput Method for Analysis of Ceramide, Glucosylceramide, and Ceramide Trihexoside in Dried Blood Spots by LC/MS/MS
  30. Altmetric Badge
    Chapter 29 Quantification of Dehydroepiandrosterone, 11-Deoxycortisol, 17-Hydroxyprogesterone, and Testosterone by Liquid Chromatography-Tandem Mass Spectrometry (LC/MS/MS)
  31. Altmetric Badge
    Chapter 30 Urinary Succinylacetone Analysis by Gas Chromatography-Mass Spectrometry (GC-MS)
  32. Altmetric Badge
    Chapter 31 Quantification of 1,25-Dihydroxyvitamin D2 and D3 in Serum Using Liquid Chromatography-Tandem Mass Spectrometry
  33. Altmetric Badge
    Chapter 32 High-Throughput Serum 25-Hydroxy Vitamin D Testing with Automated Sample Preparation
  34. Altmetric Badge
    Chapter 33 Quantitation of 25-OH-Vitamin-D 2 and 25-OH-Vitamin-D 3 in Urine Using LC-MS/MS
Attention for Chapter 8: Quantitation of Ubiquinone (Coenzyme Q 10 ) in Serum/Plasma Using Liquid Chromatography Electrospray Tandem Mass Spectrometry (ESI-LC-MS/MS)
Altmetric Badge

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Quantitation of Ubiquinone (Coenzyme Q 10 ) in Serum/Plasma Using Liquid Chromatography Electrospray Tandem Mass Spectrometry (ESI-LC-MS/MS)
Chapter number 8
Book title
Clinical Applications of Mass Spectrometry in Biomolecular Analysis
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3182-8_8
Pubmed ID
Book ISBNs
978-1-4939-3181-1, 978-1-4939-3182-8
Authors

Richard E. Mathieu, Catherine P. Riley

Abstract

Dietary ubiquinone (Coenzyme Q10) is considered an essential co-factor in the mitochondrial respiratory chain responsible for oxidative phosphorylation. This oil-soluble vitamin-like substance is mobile in cellular membranes and plays a unique role in the electron transport chain (ETC). Coenzyme Q10 (CoQ10) is present in most eukaryotic cells and functions as an electron carrier and an antioxidant. Although the exact role of Coenzyme Q10 is often debated; there is a growing interest in the measurement of CoQ10 concentrations particularly in the area of cardiovascular disease, malignancies, exercise physiology, Parkinson's disease, and patients undergoing statin drug therapies. We describe a simple method for the quantitative measurement of the ammonium adduct of Coenzyme Q10 using a high-pressure liquid chromatography combined with positive electrospray ionization tandem mass spectroscopy (ESI-LC-MS/MS) utilizing a 3 μm PFP(2) 50 × 2.0 mm 100 Å column. A stable isotopic deuterated internal standard, in the form of Coenzyme Q10-[D9], is added to the patient serum. The extraneous proteins are precipitated from the sample with ethanol and isolation of the targeted compound is facilitated by the addition of hexane to aide in the cleanup and recovery. Quantitation occurs via a 6-point calibration that is linear from 0.16 to 6.0 μg with an observed error of 6.2 % across the analytical range.

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 17 36%
Student > Master 6 13%
Lecturer 4 9%
Other 3 6%
Student > Ph. D. Student 3 6%
Other 5 11%
Unknown 9 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 19%
Engineering 6 13%
Pharmacology, Toxicology and Pharmaceutical Science 4 9%
Medicine and Dentistry 4 9%
Nursing and Health Professions 3 6%
Other 9 19%
Unknown 12 26%