↓ Skip to main content

RNA-Protein Complexes and Interactions

Overview of attention for book
Cover of 'RNA-Protein Complexes and Interactions'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 RNA-Protein Complexes and Interactions
  3. Altmetric Badge
    Chapter 2 Identification of mRNA-Interacting Factors by MS2-TRAP (MS2-Tagged RNA Affinity Purification)
  4. Altmetric Badge
    Chapter 3 Biotin–Streptavidin Affinity Purification of RNA–Protein Complexes Assembled In Vitro
  5. Altmetric Badge
    Chapter 4 Detecting RNA–Protein Interaction Using End-Labeled Biotinylated RNA Oligonucleotides and Immunoblotting
  6. Altmetric Badge
    Chapter 5 Purification of RNA–Protein Splicing Complexes Using a Tagged Protein from In Vitro Splicing Reaction Mixture
  7. Altmetric Badge
    Chapter 6 Loading of Argonaute Protein with Small Duplex RNA in Cellular Extracts
  8. Altmetric Badge
    Chapter 7 RNA-Protein Complexes and Interactions
  9. Altmetric Badge
    Chapter 8 Single-Turnover Kinetics of Methyl Transfer to tRNA by Methyltransferases
  10. Altmetric Badge
    Chapter 9 RNA-Protein Complexes and Interactions
  11. Altmetric Badge
    Chapter 10 Northwestern Blot Analysis: Detecting RNA–Protein Interaction After Gel Separation of Protein Mixture
  12. Altmetric Badge
    Chapter 11 RNA-Protein Complexes and Interactions
  13. Altmetric Badge
    Chapter 12 RNA-Protein Complexes and Interactions
  14. Altmetric Badge
    Chapter 13 RNA-Protein Complexes and Interactions
  15. Altmetric Badge
    Chapter 14 Ribo-Proteomics Approach to Profile RNA–Protein and Protein–Protein Interaction Networks
  16. Altmetric Badge
    Chapter 15 RNA-Protein Complexes and Interactions
  17. Altmetric Badge
    Chapter 16 Evolution of Cell-Type-Specific RNA Aptamers Via Live Cell-Based SELEX
  18. Altmetric Badge
    Chapter 17 RNA-Protein Complexes and Interactions
  19. Altmetric Badge
    Chapter 18 RNA-Protein Complexes and Interactions
  20. Altmetric Badge
    Chapter 19 Informational Suppression to Probe RNA:RNA Interactions in the Context of Ribonucleoproteins: U1 and 5′ Splice-Site Base-Pairing
  21. Altmetric Badge
    Chapter 20 Analysis of Alternative Pre-RNA Splicing in the Mouse Retina Using a Fluorescent Reporter
Attention for Chapter 17: RNA-Protein Complexes and Interactions
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
1 tweeter

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
RNA-Protein Complexes and Interactions
Chapter number 17
Book title
RNA-Protein Complexes and Interactions
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3591-8_17
Pubmed ID
Book ISBNs
978-1-4939-3589-5, 978-1-4939-3591-8
Authors

Weyn-Vanhentenryck, Sebastien M, Zhang, Chaolin, Sebastien M. Weyn-Vanhentenryck, Chaolin Zhang

Abstract

RNA-binding proteins (RBPs) are critical components of post-transcriptional gene expression regulation. However, their binding sites have until recently been difficult to determine due to the apparent low specificity of RBPs for their target transcripts and the lack of high-throughput assays for analyzing binding sites genome wide. Here we present a bioinformatics method for predicting RBP binding motif sites on a genome-wide scale that leverages motif conservation, RNA secondary structure, and the tendency of RBP binding sites to cluster together. A probabilistic model is learned from bona fide binding sites determined by CLIP and applied genome wide to generate high specificity binding site predictions.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 30%
Professor 2 20%
Student > Ph. D. Student 2 20%
Other 1 10%
Student > Doctoral Student 1 10%
Other 1 10%
Readers by discipline Count As %
Neuroscience 2 20%
Computer Science 2 20%
Earth and Planetary Sciences 1 10%
Biochemistry, Genetics and Molecular Biology 1 10%
Medicine and Dentistry 1 10%
Other 2 20%
Unknown 1 10%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 March 2016.
All research outputs
#3,789,798
of 7,382,271 outputs
Outputs from Methods in molecular biology
#1,626
of 5,030 outputs
Outputs of similar age
#150,535
of 277,278 outputs
Outputs of similar age from Methods in molecular biology
#29
of 112 outputs
Altmetric has tracked 7,382,271 research outputs across all sources so far. This one is in the 28th percentile – i.e., 28% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,030 research outputs from this source. They receive a mean Attention Score of 1.7. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 277,278 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 112 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.