↓ Skip to main content

Parasite Genomics Protocols

Overview of attention for book
Cover of 'Parasite Genomics Protocols'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The eukaryotic pathogen databases: a functional genomic resource integrating data from human and veterinary parasites.
  3. Altmetric Badge
    Chapter 2 From sequence mapping to genome assemblies.
  4. Altmetric Badge
    Chapter 3 Sequencing and annotation of mitochondrial genomes from individual parasitic helminths.
  5. Altmetric Badge
    Chapter 4 A Beginners Guide to Estimating the Non-synonymous to Synonymous Rate Ratio of all Protein-Coding Genes in a Genome.
  6. Altmetric Badge
    Chapter 5 Exploiting Genetic Variation to Discover Genes Involved in Important Disease Phenotypes
  7. Altmetric Badge
    Chapter 6 Identification and analysis of ingi-related retroposons in the trypanosomatid genomes.
  8. Altmetric Badge
    Chapter 7 Approaches for Studying mRNA Decay Mediated by SIDER2 Retroposons in Leishmania
  9. Altmetric Badge
    Chapter 8 Gene Suppression in Schistosomes Using RNAi.
  10. Altmetric Badge
    Chapter 9 Construction of Trypanosoma brucei Illumina RNA-Seq Libraries Enriched for Transcript Ends.
  11. Altmetric Badge
    Chapter 10 Techniques to Study Epigenetic Control and the Epigenome in Parasites
  12. Altmetric Badge
    Chapter 11 The Genome-Wide Identification of Promoter Regions in Toxoplasma gondii.
  13. Altmetric Badge
    Chapter 12 RNA-Seq Approaches for Determining mRNA Abundance in Leishmania.
  14. Altmetric Badge
    Chapter 13 Protein microarrays for parasite antigen discovery.
  15. Altmetric Badge
    Chapter 14 A transposon-based tool for transformation and mutagenesis in trypanosomatid protozoa.
  16. Altmetric Badge
    Chapter 15 Separation of Basic Proteins from Leishmania Using a Combination of Free Flow Electrophoresis (FFE) and 2D Electrophoresis (2-DE) Under Basic Conditions
  17. Altmetric Badge
    Chapter 16 Proteomic Analysis of Posttranslational Modifications Using iTRAQ in Leishmania.
  18. Altmetric Badge
    Chapter 17 Large-Scale Differential Proteome Analysis in Plasmodium falciparum Under Drug Treatment.
  19. Altmetric Badge
    Chapter 18 Parasite Genomics Protocols
  20. Altmetric Badge
    Chapter 19 Molecular Genotyping of Trypanosoma cruzi for Lineage Assignment and Population Genetics.
  21. Altmetric Badge
    Chapter 20 Screening Leishmania donovani Complex-Specific Genes Required for Visceral Disease.
  22. Altmetric Badge
    Chapter 21 ERRATUM: From Sequence Mapping to Genome Assemblies
Attention for Chapter 8: Gene Suppression in Schistosomes Using RNAi.
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Gene Suppression in Schistosomes Using RNAi.
Chapter number 8
Book title
Parasite Genomics Protocols
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-1438-8_8
Pubmed ID
Book ISBNs
978-1-4939-1437-1, 978-1-4939-1438-8
Authors

Akram A Da'dara, Patrick J Skelly, Akram A. Da’dara, Patrick J. Skelly, Da’dara, Akram A., Skelly, Patrick J.

Abstract

Schistosomiasis is a neglected tropical disease responsible for the death of more than 300,000 people every year. The disease is caused by intravascular parasitic platyhelminths called schistosomes. Treatment and control of schistosomiasis rely on a single drug, praziquantel, and concern exists over the possible emergence of resistance to this drug. The recent completion of the genome sequences of the three main worm species that cause schistosomiasis in humans has raised hope for the development of new interventions to treat the disease. RNA interference (RNAi), a mechanism by which gene-specific double-stranded RNA (dsRNA) triggers degradation of homologous mRNA transcripts, has emerged as an important tool to evaluate and validate new potential drug targets. In addition, RNAi has been used to explore the basic biology of these debilitating parasites. RNAi can be achieved in all stages of the parasite's life cycle in which it has been tested. In this review, we describe methods for applying RNAi to suppress gene expression in the intra-mammalian life stages (adults and schistosomula) of Schistosoma mansoni. We describe procedures for isolating and culturing the parasites, preparing and delivering dsRNA targeting a specific gene, as well as a procedure to evaluate gene suppression by quantitative real-time PCR.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Uruguay 1 5%
Unknown 20 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 24%
Librarian 2 10%
Professor > Associate Professor 2 10%
Student > Ph. D. Student 2 10%
Other 1 5%
Other 3 14%
Unknown 6 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 29%
Medicine and Dentistry 5 24%
Social Sciences 1 5%
Immunology and Microbiology 1 5%
Unknown 8 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 July 2015.
All research outputs
#18,383,471
of 22,770,070 outputs
Outputs from Methods in molecular biology
#7,867
of 13,090 outputs
Outputs of similar age
#255,658
of 352,903 outputs
Outputs of similar age from Methods in molecular biology
#479
of 996 outputs
Altmetric has tracked 22,770,070 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,090 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,903 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 996 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.