↓ Skip to main content

Plant Nitric Oxide

Overview of attention for book
Attention for Chapter 8: Plant Nitric Oxide
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Plant Nitric Oxide
Chapter number 8
Book title
Plant Nitric Oxide
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3600-7_8
Pubmed ID
Book ISBNs
978-1-4939-3598-7, 978-1-4939-3600-7
Authors

Maia, Luisa B, Moura, José J G, Luisa B. Maia, José J. G. Moura, Maia, Luisa B., Moura, José J. G.

Abstract

Electron paramagnetic resonance (EPR) spectroscopy is the ideal methodology to identify radicals (detection and characterization of molecular structure) and to study their kinetics, in both simple and complex biological systems. The very low concentration and short life-time of NO and of many other radicals do not favor its direct detection and spin-traps are needed to produce a new and persistent radical that can be subsequently detected by EPR spectroscopy.In this chapter, we present the basic concepts of EPR spectroscopy and of some spin-trapping methodologies to study NO. The "strengths and weaknesses" of iron-dithiocarbamates utilization, the NO traps of choice for the authors, are thoroughly discussed and a detailed description of the method to quantify the NO formation by molybdoenzymes is provided.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 30%
Student > Ph. D. Student 2 20%
Student > Bachelor 2 20%
Student > Master 2 20%
Unknown 1 10%
Readers by discipline Count As %
Chemistry 5 50%
Medicine and Dentistry 2 20%
Agricultural and Biological Sciences 1 10%
Biochemistry, Genetics and Molecular Biology 1 10%
Unknown 1 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 December 2016.
All research outputs
#20,322,106
of 22,865,319 outputs
Outputs from Methods in molecular biology
#9,916
of 13,127 outputs
Outputs of similar age
#330,684
of 393,645 outputs
Outputs of similar age from Methods in molecular biology
#1,053
of 1,470 outputs
Altmetric has tracked 22,865,319 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,127 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,645 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,470 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.