↓ Skip to main content

Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron…

Overview of attention for article published in International Journal of Systematic and Evolutionary Microbiology, March 2007
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

wikipedia
2 Wikipedia pages

Citations

dimensions_citation
148 Dimensions

Readers on

mendeley
123 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor
Published in
International Journal of Systematic and Evolutionary Microbiology, March 2007
DOI 10.1099/ijs.0.64576-0
Pubmed ID
Authors

S. E. Hoeft, J. S. Blum, J. F. Stolz, F. R. Tabita, B. Witte, G. M. King, J. M. Santini, R. S. Oremland

Abstract

A facultative chemoautotrophic bacterium, strain MLHE-1(T), was isolated from Mono Lake, an alkaline hypersaline soda lake in California, USA. Cells of strain MLHE-1(T) were Gram-negative, short motile rods that grew with inorganic electron donors (arsenite, hydrogen, sulfide or thiosulfate) coupled with the reduction of nitrate to nitrite. No aerobic growth was attained with arsenite or sulfide, but hydrogen sustained both aerobic and anaerobic growth. No growth occurred when nitrite or nitrous oxide was substituted for nitrate. Heterotrophic growth was observed under aerobic and anaerobic (nitrate) conditions. Cells of strain MLHE-1(T) could oxidize but not grow on CO, while CH(4) neither supported growth nor was it oxidized. When grown chemoautotrophically, strain MLHE-1(T) assimilated inorganic carbon via the Calvin-Benson-Bassham reductive pentose phosphate pathway, with the activity of ribulose 1,5-bisphosphate carboxylase (RuBisCO) functioning optimally at 0.1 M NaCl and at pH 7.3. Strain MLHE-1(T) grew over broad ranges of pH (7.3-10.0; optimum, 9.3), salinity (15-190 g l(-1); optimum 30 g l(-1)) and temperature (13-40 degrees C; optimum, 30 degrees C). Phylogenetic analysis of 16S rRNA gene sequences placed strain MLHE-1(T) in the class Gammaproteobacteria (family Ectothiorhodospiraceae) and most closely related to Alkalispirillum mobile (98.5 %) and Alkalilimnicola halodurans (98.6 %), although none of these three haloalkaliphilic micro-organisms were capable of photoautotrophic growth and only strain MLHE-1(T) was able to oxidize As(III). On the basis of physiological characteristics and DNA-DNA hybridization data, it is suggested that strain MLHE-1(T) represents a novel species within the genus Alkalilimnicola for which the name Alkalilimnicola ehrlichii is proposed. The type strain is MLHE-1(T) (=DSM 17681(T)=ATCC BAA-1101(T)). Aspects of the annotated full genome of Alkalilimnicola ehrlichii are discussed in the light of its physiology.

Mendeley readers

The data shown below were compiled from readership statistics for 123 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 2 2%
United States 2 2%
South Africa 1 <1%
Israel 1 <1%
Portugal 1 <1%
Canada 1 <1%
Colombia 1 <1%
Unknown 114 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 35 28%
Researcher 26 21%
Student > Master 14 11%
Student > Bachelor 11 9%
Other 8 7%
Other 29 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 48 39%
Biochemistry, Genetics and Molecular Biology 17 14%
Environmental Science 14 11%
Medicine and Dentistry 13 11%
Unspecified 13 11%
Other 18 15%

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 April 2014.
All research outputs
#3,597,220
of 12,423,808 outputs
Outputs from International Journal of Systematic and Evolutionary Microbiology
#1,203
of 5,556 outputs
Outputs of similar age
#79,907
of 270,173 outputs
Outputs of similar age from International Journal of Systematic and Evolutionary Microbiology
#41
of 122 outputs
Altmetric has tracked 12,423,808 research outputs across all sources so far. This one is in the 49th percentile – i.e., 49% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,556 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 270,173 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 122 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.