↓ Skip to main content

Human umbilical cord blood-derived mononuclear cells improve murine ventricular function upon intramyocardial delivery in right ventricular chronic pressure overload

Overview of attention for article published in Stem Cell Research & Therapy, March 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Human umbilical cord blood-derived mononuclear cells improve murine ventricular function upon intramyocardial delivery in right ventricular chronic pressure overload
Published in
Stem Cell Research & Therapy, March 2015
DOI 10.1186/s13287-015-0044-y
Pubmed ID
Authors

Saji Oommen, Satsuki Yamada, Susana Cantero Peral, Katherine A Campbell, Elizabeth S Bruinsma, Andre Terzic, Timothy J Nelson

Abstract

Stem cell therapy has emerged as potential therapeutic strategy for damaged heart muscles. Umbilical cord blood (UCB) cells are the most prevalent stem cell source available, yet have not been fully tested in cardiac regeneration. Herein, studies were performed to evaluate the cardiovascular safety and beneficial effect of mononuclear cells (MNCs) isolated from human umbilical cord blood upon intramyocardial delivery in a murine model of right ventricle (RV) heart failure due to pressure overload. UCB-derived MNCs were delivered into the myocardium of a diseased RV cardiac model. Pulmonary artery banding (PAB) was used to produce pressure overload in athymic nude mice that were then injected intramyocardially with UCB-MNCs (0.4 x 10^6 cells/heart). Cardiac functions were then monitored by telemetry, echocardiography, magnetic resonance imaging (MRI) and pathologic analysis of heart samples to determine the ability for cell-based repair. The cardio-toxicity studies provided evidence that UCB cell transplantation has a safe therapeutic window between 0.4-0.8 million cells/heart without altering QT or ST-segments or the morphology of electrocardiograph waves. The PAB cohort demonstrated significant changes in RV chamber dilation and functional defects consistent with severe pressure overload. Using cardiac MRI analysis, UCB-MNC transplantation in the setting of PAB demonstrated an improvement in RV structure and function in this surgical mouse model. The RV volume load in PAB-only mice was 24.09 ± 3.9 compared to 11.05 ± 2.09 in the cell group (mm(3), p-value < 0.005). The analysis of pathogenic gene expression (BNP, ANP, Acta1, Myh7) in the cell-transplanted group showed a significant reversal with respect to the diseased PAB mice with a robust increase in cardiac progenitor gene expression such as GATA4, Kdr, Mef2c and Nkx2.5. Histological analysis indicated significant fibrosis in the RV in response to PAB that was reduced following UCB-MNC's transplantation along with concomitant increased Ki-67 expression and CD31 positive vessels as a marker of angiogenesis within the myocardium. These findings indicate that human UCB-derived MNCs promote an adaptive regenerative response in the right ventricle upon intramyocardial transplantation in the setting of chronic pressure overload heart failure.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 45 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 22%
Student > Master 6 13%
Researcher 5 11%
Student > Bachelor 4 9%
Student > Postgraduate 4 9%
Other 10 22%
Unknown 6 13%
Readers by discipline Count As %
Medicine and Dentistry 15 33%
Biochemistry, Genetics and Molecular Biology 6 13%
Agricultural and Biological Sciences 5 11%
Business, Management and Accounting 1 2%
Computer Science 1 2%
Other 6 13%
Unknown 11 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 April 2015.
All research outputs
#18,405,265
of 22,797,621 outputs
Outputs from Stem Cell Research & Therapy
#1,727
of 2,418 outputs
Outputs of similar age
#192,691
of 263,449 outputs
Outputs of similar age from Stem Cell Research & Therapy
#54
of 66 outputs
Altmetric has tracked 22,797,621 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,418 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,449 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 66 others from the same source and published within six weeks on either side of this one. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.