↓ Skip to main content

A microbial platform for renewable propane synthesis based on a fermentative butanol pathway

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, April 2015
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#1 of 1,578)
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (97th percentile)

Mentioned by

news
12 news outlets
blogs
4 blogs
twitter
26 X users
facebook
2 Facebook pages
wikipedia
1 Wikipedia page
googleplus
2 Google+ users

Citations

dimensions_citation
55 Dimensions

Readers on

mendeley
116 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A microbial platform for renewable propane synthesis based on a fermentative butanol pathway
Published in
Biotechnology for Biofuels and Bioproducts, April 2015
DOI 10.1186/s13068-015-0231-1
Pubmed ID
Authors

Navya Menon, András Pásztor, Binuraj RK Menon, Pauli Kallio, Karl Fisher, M Kalim Akhtar, David Leys, Patrik R Jones, Nigel S Scrutton

Abstract

Propane (C3H8) is a volatile hydrocarbon with highly favourable physicochemical properties as a fuel, in addition to existing global markets and infrastructure for storage, distribution and utilization in a wide range of applications. Consequently, propane is an attractive target product in research aimed at developing new renewable alternatives to complement currently used petroleum-derived fuels. This study focuses on the construction and evaluation of alternative microbial biosynthetic pathways for the production of renewable propane. The new pathways utilize CoA intermediates that are derived from clostridial-like fermentative butanol pathways and are therefore distinct from the first microbial propane pathways recently engineered in Escherichia coli. We report the assembly and evaluation of four different synthetic pathways for the production of propane and butanol, designated a) atoB-adhE2 route, b) atoB-TPC7 route, c) nphT7-adhE2 route and d) nphT7-TPC7 route. The highest butanol titres were achieved with the atoB-adhE2 (473 ± 3 mg/L) and atoB-TPC7 (163 ± 2 mg/L) routes. When aldehyde deformylating oxygenase (ADO) was co-expressed with these pathways, the engineered hosts also produced propane. The atoB-TPC7-ADO pathway was the most effective in producing propane (220 ± 3 μg/L). By (i) deleting competing pathways, (ii) including a previously designed ADOA134F variant with an enhanced specificity towards short-chain substrates and (iii) including a ferredoxin-based electron supply system, the propane titre was increased (3.40 ± 0.19 mg/L). This study expands the metabolic toolbox for renewable propane production and provides new insight and understanding for the development of next-generation biofuel platforms. In developing an alternative CoA-dependent fermentative butanol pathway, which includes an engineered ADO variant (ADOA134F), the study addresses known limitations, including the low bio-availability of butyraldehyde precursors and poor activity of ADO with butyraldehyde. Graphical abstractPropane synthesis derived from a fermentative butanol pathway is enabled by metabolic engineering.

X Demographics

X Demographics

The data shown below were collected from the profiles of 26 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 116 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Sweden 1 <1%
New Zealand 1 <1%
Denmark 1 <1%
China 1 <1%
United States 1 <1%
Unknown 111 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 30 26%
Student > Ph. D. Student 29 25%
Student > Master 19 16%
Student > Bachelor 7 6%
Professor > Associate Professor 6 5%
Other 10 9%
Unknown 15 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 34 29%
Biochemistry, Genetics and Molecular Biology 25 22%
Engineering 14 12%
Chemistry 7 6%
Chemical Engineering 6 5%
Other 4 3%
Unknown 26 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 128. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 November 2018.
All research outputs
#324,208
of 25,374,917 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#1
of 1,578 outputs
Outputs of similar age
#3,609
of 278,954 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#1
of 35 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 278,954 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 35 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 97% of its contemporaries.