↓ Skip to main content

Diet and exercise interventions for preventing gestational diabetes mellitus

Overview of attention for article published in Cochrane database of systematic reviews, April 2015
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (95th percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

blogs
2 blogs
twitter
43 X users
facebook
3 Facebook pages

Citations

dimensions_citation
174 Dimensions

Readers on

mendeley
526 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Diet and exercise interventions for preventing gestational diabetes mellitus
Published in
Cochrane database of systematic reviews, April 2015
DOI 10.1002/14651858.cd010443.pub2
Pubmed ID
Authors

Emily Bain, Morven Crane, Joanna Tieu, Shanshan Han, Caroline A Crowther, Philippa Middleton

Abstract

Gestational diabetes mellitus (GDM) is associated with a wide range of adverse health consequences for women and their babies in the short and long term. With an increasing prevalence of GDM worldwide, there is an urgent need to assess strategies for GDM prevention, such as combined diet and exercise interventions. To assess the effects of combined diet and exercise interventions for preventing GDM and associated adverse health consequences for women and their babies. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (11 February 2014) and reference lists of retrieved studies. We updated the search in February 2015 but these results have not yet been incorporated and are awaiting classification. Randomised controlled trials (RCTs) and cluster-RCTs assessing the effects of interventions that included diet and exercise components. We included studies where combined diet and exercise interventions were compared with no intervention (i.e. standard care).We planned to also compare diet and exercise interventions with alternative diet and/or exercise interventions but no trials were identified for this comparison. Two review authors independently assessed study eligibility, extracted data and assessed the risk of bias of the included studies. Data were checked for accuracy. We included 13 randomised controlled trials (involving 4983 women and their babies). We assessed the included trials as being of moderate risk of bias overall.When comparing women receiving a diet and exercise intervention with those receiving no intervention, there was no clear difference in the risk of developing GDM (average risk ratio (RR) 0.92, 95% confidence interval (CI) 0.68 to 1.23; 11 trials, 3744 women), caesarean section (RR 0.92, 95% CI 0.83 to 1.01; seven trials, 3246 women), or large-for-gestational age (RR 0.90, 95% CI 0.77 to 1.05; 2950 infants). Only one trial reported on perinatal mortality, and found no clear difference in the risk of stillbirth (RR 0.99, 95% CI 0.29 to 3.42; 2202 fetuses) or neonatal death (RR 0.99, 95% CI 0.06 to 15.85; 2202 neonates).Very few differences were shown between groups for the review's secondary outcomes, including for induction of labour, perineal trauma, pre-eclampsia, postpartum haemorrhage and infection, macrosomia, birthweight, small-for-gestational age, ponderal index, neonatal hypoglycaemia requiring treatment, hyperbilirubinaemia requiring treatment, shoulder dystocia, bone fracture or nerve palsy. Women receiving a combined diet and exercise intervention were, however, found to have a reduced risk of preterm birth compared with women receiving no intervention (RR 0.71, 95% CI 0.55 to 0.93; five trials, 2713 women).A trend towards reduced weight gain during pregnancy was shown for women receiving the combined diet and exercise intervention (mean difference (MD) -0.76 kg, 95% CI -1.55 to 0.03; eight trials, 2707 women; P = 0.06, random-effects); but no clear difference in postnatal weight retention was observed overall.In relation to adherence to the interventions, a number of trials that reported on behaviour modifications showed benefits in diet- (5/8 trials) and physical activity- (4/8 trials) related behaviours for women receiving the combined diet and exercise intervention, compared with women receiving no intervention; however there was notable variation across trials in outcomes measured and results observed. Only two trials reported on well-being and quality of life of women, and did not observe differences between groups for these outcomes.Very few trials reported on outcomes relating to the use of health services, although one trial suggested a reduced length of antenatal hospital stay for women receiving a combined diet and exercise intervention (MD -0.27 days, 95% CI -0.49 to -0.05; 2153 women).No information was available on outcomes for the infant as a child or adult, or for most longer-term outcomes for the mother. There are limitations associated with the available RCT evidence on the effects of combined diet and exercise interventions during pregnancy for preventing GDM. Results from 13 RCTs (of moderate quality) suggest no clear difference in the risk of developing GDM for women receiving a combined diet and exercise intervention compared with women receiving no intervention. However, the ability to draw firm conclusions was limited by variations in the quality of trials, characteristics of the interventions and populations assessed, and outcome definitions between trials.Based on the data currently available, conclusive evidence is not available to guide practice. Further large, well-designed RCTs, addressing the limitations of previous studies, are needed to assess the effects of combined interventions on preventing GDM and other relevant pregnancy outcomes including caesarean birth, large-for-gestational age and perinatal mortality. Health service utilisation and costs, and longer-term outcomes for mothers and their babies should be included. We identified another 16 trials which are ongoing and we will consider these for inclusion in the next update of this review.[Note: The 28 records in 'Studies awaiting classification' may alter the conclusions of the review once assessed].

X Demographics

X Demographics

The data shown below were collected from the profiles of 43 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 526 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 <1%
Ethiopia 1 <1%
Chile 1 <1%
Germany 1 <1%
United Kingdom 1 <1%
India 1 <1%
Spain 1 <1%
Canada 1 <1%
Unknown 517 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 102 19%
Student > Ph. D. Student 79 15%
Student > Bachelor 68 13%
Researcher 47 9%
Student > Postgraduate 32 6%
Other 95 18%
Unknown 103 20%
Readers by discipline Count As %
Medicine and Dentistry 175 33%
Nursing and Health Professions 90 17%
Psychology 25 5%
Sports and Recreations 25 5%
Agricultural and Biological Sciences 24 5%
Other 64 12%
Unknown 123 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 43. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 January 2019.
All research outputs
#973,039
of 25,711,998 outputs
Outputs from Cochrane database of systematic reviews
#1,904
of 13,134 outputs
Outputs of similar age
#11,835
of 280,179 outputs
Outputs of similar age from Cochrane database of systematic reviews
#47
of 256 outputs
Altmetric has tracked 25,711,998 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,134 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.8. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,179 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 95% of its contemporaries.
We're also able to compare this research output to 256 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.