↓ Skip to main content

Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial

Overview of attention for article published in Journal of NeuroEngineering and Rehabilitation, April 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

policy
1 policy source
twitter
16 X users
wikipedia
2 Wikipedia pages

Citations

dimensions_citation
119 Dimensions

Readers on

mendeley
362 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial
Published in
Journal of NeuroEngineering and Rehabilitation, April 2018
DOI 10.1186/s12984-018-0377-8
Pubmed ID
Authors

Rocco Salvatore Calabrò, Antonino Naro, Margherita Russo, Placido Bramanti, Luigi Carioti, Tina Balletta, Antonio Buda, Alfredo Manuli, Serena Filoni, Alessia Bramanti

Abstract

The use of neurorobotic devices may improve gait recovery by entraining specific brain plasticity mechanisms, which may be a key issue for successful rehabilitation using such approach. We assessed whether the wearable exoskeleton, Ekso™, could get higher gait performance than conventional overground gait training (OGT) in patients with hemiparesis due to stroke in a chronic phase, and foster the recovery of specific brain plasticity mechanisms. We enrolled forty patients in a prospective, pre-post, randomized clinical study. Twenty patients underwent Ekso™ gait training (EGT) (45-min/session, five times/week), in addition to overground gait therapy, whilst 20 patients practiced an OGT of the same duration. All individuals were evaluated about gait performance (10 m walking test), gait cycle, muscle activation pattern (by recording surface electromyography from lower limb muscles), frontoparietal effective connectivity (FPEC) by using EEG, cortico-spinal excitability (CSE), and sensory-motor integration (SMI) from both primary motor areas by using Transcranial Magnetic Stimulation paradigm before and after the gait training. A significant effect size was found in the EGT-induced improvement in the 10 m walking test (d = 0.9, p < 0.001), CSE in the affected side (d = 0.7, p = 0.001), SMI in the affected side (d = 0.5, p = 0.03), overall gait quality (d = 0.8, p = 0.001), hip and knee muscle activation (d = 0.8, p = 0.001), and FPEC (d = 0.8, p = 0.001). The strengthening of FPEC (r = 0.601, p < 0.001), the increase of SMI in the affected side (r = 0.554, p < 0.001), and the decrease of SMI in the unaffected side (r = - 0.540, p < 0.001) were the most important factors correlated with the clinical improvement. Ekso™ gait training seems promising in gait rehabilitation for post-stroke patients, besides OGT. Our study proposes a putative neurophysiological basis supporting Ekso™ after-effects. This knowledge may be useful to plan highly patient-tailored gait rehabilitation protocols. ClinicalTrials.gov , NCT03162263 .

X Demographics

X Demographics

The data shown below were collected from the profiles of 16 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 362 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 362 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 47 13%
Researcher 46 13%
Student > Master 38 10%
Student > Ph. D. Student 31 9%
Student > Doctoral Student 18 5%
Other 37 10%
Unknown 145 40%
Readers by discipline Count As %
Nursing and Health Professions 58 16%
Engineering 48 13%
Medicine and Dentistry 26 7%
Neuroscience 21 6%
Sports and Recreations 14 4%
Other 33 9%
Unknown 162 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 18. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 June 2023.
All research outputs
#1,869,599
of 23,907,431 outputs
Outputs from Journal of NeuroEngineering and Rehabilitation
#73
of 1,330 outputs
Outputs of similar age
#41,029
of 329,541 outputs
Outputs of similar age from Journal of NeuroEngineering and Rehabilitation
#3
of 32 outputs
Altmetric has tracked 23,907,431 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,330 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.4. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,541 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.