↓ Skip to main content

Autoantigen cross-reactive environmental antigen can trigger multiple sclerosis-like disease

Overview of attention for article published in Journal of Neuroinflammation, May 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

blogs
1 blog

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Autoantigen cross-reactive environmental antigen can trigger multiple sclerosis-like disease
Published in
Journal of Neuroinflammation, May 2015
DOI 10.1186/s12974-015-0313-9
Pubmed ID
Authors

Catherine J Reynolds, Malcolm J W Sim, Kathryn J Quigley, Daniel M Altmann, Rosemary J Boyton

Abstract

Multiple sclerosis is generally considered an autoimmune disease resulting from interaction between predisposing genes and environmental factors, together allowing immunological self-tolerance to be compromised. The precise nature of the environmental inputs has been elusive, infectious agents having received considerable attention. A recent study generated an algorithm predicting naturally occurring T cell receptor (TCR) ligands from the proteome database. Taking the example of a multiple sclerosis patient-derived anti-myelin TCR, the study identified a number of stimulatory, cross-reactive peptide sequences from environmental and human antigens. Having previously generated a spontaneous multiple sclerosis (MS) model through expression of this TCR, we asked whether any of these could indeed function in vivo to trigger CNS disease by cross-reactive activation. A number of myelin epitope cross-reactive epitopes could stimulate T cell immunity in this MS anti-myelin TCR transgenic model. Two of the most stimulatory of these 'environmental' epitopes, from Dictyostyelium slime mold and from Emiliania huxleyi, were tested for the ability to induce MS-like disease in the transgenics. We found that immunization with cross-reactive peptide from Dictyostyelium slime mold (but not from E. huxleyi) induces severe disease. These specific environmental epitopes are unlikely to be common triggers of MS, but this study suggests that our search for the cross-reactivity triggers of autoimmune activation leading to MS should encompass epitopes not just from the 'infectome' but also from the full environmental 'exposome.'

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 18%
Student > Ph. D. Student 3 11%
Student > Bachelor 3 11%
Student > Master 3 11%
Professor 2 7%
Other 7 25%
Unknown 5 18%
Readers by discipline Count As %
Medicine and Dentistry 9 32%
Environmental Science 3 11%
Immunology and Microbiology 3 11%
Neuroscience 2 7%
Unspecified 1 4%
Other 4 14%
Unknown 6 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 May 2015.
All research outputs
#4,592,159
of 22,805,349 outputs
Outputs from Journal of Neuroinflammation
#946
of 2,629 outputs
Outputs of similar age
#58,669
of 264,546 outputs
Outputs of similar age from Journal of Neuroinflammation
#17
of 55 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,629 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has gotten more attention than average, scoring higher than 63% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,546 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 55 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.