↓ Skip to main content

Amyloid β peptide-induced inhibition of endothelial nitric oxide production involves oxidative stress-mediated constitutive eNOS/HSP90 interaction and disruption of agonist-mediated Akt activation

Overview of attention for article published in Journal of Neuroinflammation, May 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Citations

dimensions_citation
51 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Amyloid β peptide-induced inhibition of endothelial nitric oxide production involves oxidative stress-mediated constitutive eNOS/HSP90 interaction and disruption of agonist-mediated Akt activation
Published in
Journal of Neuroinflammation, May 2015
DOI 10.1186/s12974-015-0304-x
Pubmed ID
Authors

Folami Lamoke, Valeria Mazzone, Tiziana Persichini, Annamaria Maraschi, Michael Brennan Harris, Richard C Venema, Marco Colasanti, Micaela Gliozzi, Carolina Muscoli, Manuela Bartoli, Vincenzo Mollace

Abstract

Amyloid β (Aβ)-induced vascular dysfunction significantly contributes to the pathogenesis of Alzheimer's disease (AD). Aβ is known to impair endothelial nitric oxide synthase (eNOS) activity, thus inhibiting endothelial nitric oxide production (NO). In this study, we investigated Aβ-effects on heat shock protein 90 (HSP90) interaction with eNOS and Akt in cultured vascular endothelial cells and also explored the role of oxidative stress in this process. Treatments of endothelial cells (EC) with Aβ promoted the constitutive association of HSP90 with eNOS but abrogated agonist (vascular endothelial growth factor (VEGF))-mediated HSP90 interaction with Akt. This effect resulted in blockade of agonist-mediated phosphorylation of Akt and eNOS at serine 1179. Furthermore, Aβ stimulated the production of reactive oxygen species in endothelial cells and concomitant treatments of the cells with the antioxidant N-acetyl-cysteine (NAC) prevented Aβ effects in promoting HSP90/eNOS interaction and rescued agonist-mediated Akt and eNOS phosphorylation. The obtained data support the hypothesis that oxidative damage caused by Aβ results in altered interaction of HSP90 with Akt and eNOS, therefore promoting vascular dysfunction. This mechanism, by contributing to Aβ-mediated blockade of nitric oxide production, may significantly contribute to the cognitive impairment seen in AD patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
India 1 2%
Unknown 41 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 19%
Researcher 6 14%
Student > Doctoral Student 4 9%
Student > Bachelor 4 9%
Student > Master 3 7%
Other 6 14%
Unknown 12 28%
Readers by discipline Count As %
Neuroscience 8 19%
Biochemistry, Genetics and Molecular Biology 6 14%
Agricultural and Biological Sciences 6 14%
Medicine and Dentistry 6 14%
Engineering 2 5%
Other 3 7%
Unknown 12 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 June 2015.
All research outputs
#2,818,096
of 22,805,349 outputs
Outputs from Journal of Neuroinflammation
#453
of 2,629 outputs
Outputs of similar age
#38,029
of 264,280 outputs
Outputs of similar age from Journal of Neuroinflammation
#5
of 54 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,629 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,280 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.