↓ Skip to main content

Dynamic regulation of mRNA decay during neural development

Overview of attention for article published in Neural Development, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
52 Dimensions

Readers on

mendeley
125 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dynamic regulation of mRNA decay during neural development
Published in
Neural Development, April 2015
DOI 10.1186/s13064-015-0038-6
Pubmed ID
Authors

Dana A Burow, Maxine C Umeh-Garcia, Marie B True, Crystal D Bakhaj, David H Ardell, Michael D Cleary

Abstract

Gene expression patterns are determined by rates of mRNA transcription and decay. While transcription is known to regulate many developmental processes, the role of mRNA decay is less extensively defined. A critical step toward defining the role of mRNA decay in neural development is to measure genome-wide mRNA decay rates in neural tissue. Such information should reveal the degree to which mRNA decay contributes to differential gene expression and provide a foundation for identifying regulatory mechanisms that affect neural mRNA decay. We developed a technique that allows genome-wide mRNA decay measurements in intact Drosophila embryos, across all tissues and specifically in the nervous system. Our approach revealed neural-specific decay kinetics, including stabilization of transcripts encoding regulators of axonogenesis and destabilization of transcripts encoding ribosomal proteins and histones. We also identified correlations between mRNA stability and physiologic properties of mRNAs; mRNAs that are predicted to be translated within axon growth cones or dendrites have long half-lives while mRNAs encoding transcription factors that regulate neurogenesis have short half-lives. A search for candidate cis-regulatory elements identified enrichment of the Pumilio recognition element (PRE) in mRNAs encoding regulators of neurogenesis. We found that decreased expression of the RNA-binding protein Pumilio stabilized predicted neural mRNA targets and that a PRE is necessary to trigger reporter-transcript decay in the nervous system. We found that differential mRNA decay contributes to the relative abundance of transcripts involved in cell-fate decisions, axonogenesis, and other critical events during Drosophila neural development. Neural-specific decay kinetics and the functional specificity of mRNA decay suggest the existence of a dynamic neurodevelopmental mRNA decay network. We found that Pumilio is one component of this network, revealing a novel function for this RNA-binding protein.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 125 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 2%
United Kingdom 1 <1%
Argentina 1 <1%
Unknown 121 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 42 34%
Researcher 22 18%
Student > Bachelor 11 9%
Student > Doctoral Student 9 7%
Student > Master 8 6%
Other 13 10%
Unknown 20 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 48 38%
Biochemistry, Genetics and Molecular Biology 34 27%
Neuroscience 8 6%
Medicine and Dentistry 6 5%
Chemistry 2 2%
Other 7 6%
Unknown 20 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 May 2015.
All research outputs
#15,866,607
of 23,577,654 outputs
Outputs from Neural Development
#136
of 227 outputs
Outputs of similar age
#159,544
of 266,707 outputs
Outputs of similar age from Neural Development
#7
of 8 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 227 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,707 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one.