↓ Skip to main content

Multi-cellular human bronchial models exposed to diesel exhaust particles: assessment of inflammation, oxidative stress and macrophage polarization

Overview of attention for article published in Particle and Fibre Toxicology, May 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
63 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Multi-cellular human bronchial models exposed to diesel exhaust particles: assessment of inflammation, oxidative stress and macrophage polarization
Published in
Particle and Fibre Toxicology, May 2018
DOI 10.1186/s12989-018-0256-2
Pubmed ID
Authors

Jie Ji, Swapna Upadhyay, Xiaomiao Xiong, Maria Malmlöf, Thomas Sandström, Per Gerde, Lena Palmberg

Abstract

Diesel exhaust particles (DEP) are a major component of outdoor air pollution. DEP mediated pulmonary effects are plausibly linked to inflammatory and oxidative stress response in which macrophages (MQ), epithelial cells and their cell-cell interaction plays a crucial role. Therefore, in this study we aimed at studying the cellular crosstalk between airway epithelial cells with MQ and MQ polarization following exposure to aerosolized DEP by assessing inflammation, oxidative stress, and MQ polarization response markers. Lung mucosa models including primary bronchial epithelial cells (PBEC) cultured at air-liquid interface (ALI) were co-cultured without (PBEC-ALI) and with MQ (PBEC-ALI/MQ). Cells were exposed to 12.7 μg/cm2 aerosolized DEP using XposeALI®. Control (sham) models were exposed to clean air. Cell viability was assessed. CXCL8 and IL-6 were measured in the basal medium by ELISA. The mRNA expression of inflammatory markers (CXCL8, IL6, TNFα), oxidative stress (NFKB, HMOX1, GPx) and MQ polarization markers (IL10, IL4, IL13, MRC1, MRC2 RETNLA, IL12 andIL23) were measured by qRT-PCR. The surface/mRNA expression of TLR2/TLR4 was detected by FACS and qRT-PCR. In PBEC-ALI exposure to DEP significantly increased the secretion of CXCL8, mRNA expression of inflammatory markers (CXCL8, TNFα) and oxidative stress markers (NFKB, HMOX1, GPx). However, mRNA expressions of these markers (CXCL8, IL6, NFKB, and HMOX1) were reduced in PBEC-ALI/MQ models after DEP exposure. TLR2 and TLR4 mRNA expression increased after DEP exposure in PBEC-ALI. The surface expression of TLR2 and TLR4 on PBEC was significantly reduced in sham-exposed PBEC-ALI/MQ compared to PBEC-ALI. After DEP exposure surface expression of TLR2 was increased on PBEC of PBEC-ALI/MQ, while TLR4 was decreased in both models. DEP exposure resulted in similar expression pattern of TLR2/TLR4 on MQ as in PBEC. In PBEC-ALI/MQ, DEP exposure increased the mRNA expression of anti-inflammatory M2 macrophage markers (IL10, IL4, IL13, MRC1, MRC2). The cellular interaction of PBEC with MQ in response to DEP plays a pivotal role for MQ phenotypic alteration towards M2-subtypes, thereby promoting an efficient resolution of the inflammation. Furthermore, this study highlighted the fact that cell-cell interaction using multicellular ALI-models combined with an in vivo-like inhalation exposure system is critical in better mimicking the airway physiology compared with traditional cell culture systems.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 63 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 63 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 21%
Student > Ph. D. Student 12 19%
Student > Master 5 8%
Student > Doctoral Student 5 8%
Student > Postgraduate 4 6%
Other 5 8%
Unknown 19 30%
Readers by discipline Count As %
Engineering 6 10%
Pharmacology, Toxicology and Pharmaceutical Science 5 8%
Biochemistry, Genetics and Molecular Biology 5 8%
Agricultural and Biological Sciences 5 8%
Environmental Science 4 6%
Other 14 22%
Unknown 24 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 May 2018.
All research outputs
#17,947,156
of 23,047,237 outputs
Outputs from Particle and Fibre Toxicology
#400
of 564 outputs
Outputs of similar age
#236,751
of 326,328 outputs
Outputs of similar age from Particle and Fibre Toxicology
#10
of 11 outputs
Altmetric has tracked 23,047,237 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 564 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.2. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,328 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.