↓ Skip to main content

Computed tomography versus magnetic resonance imaging versus bone scintigraphy for clinically suspected scaphoid fractures in patients with negative plain radiographs

Overview of attention for article published in Cochrane database of systematic reviews, June 2015
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (95th percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

blogs
2 blogs
twitter
26 tweeters
wikipedia
1 Wikipedia page

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
178 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Computed tomography versus magnetic resonance imaging versus bone scintigraphy for clinically suspected scaphoid fractures in patients with negative plain radiographs
Published in
Cochrane database of systematic reviews, June 2015
DOI 10.1002/14651858.cd010023.pub2
Pubmed ID
Authors

Wouter H Mallee, Junfeng Wang, Rudolf W Poolman, Peter Kloen, Mario Maas, Henrica CW de Vet, Job N Doornberg

Abstract

In clinically suspected scaphoid fractures, early diagnosis reduces the risk of non-union and minimises loss in productivity resulting from unnecessary cast immobilisation. Since initial radiographs do not exclude the possibility of a fracture, additional imaging is needed. Computed tomography (CT), magnetic resonance imaging (MRI) and bone scintigraphy (BS) are widely used to establish a definitive diagnosis, but there is uncertainty about the most appropriate method. The primary aim of this study is to identify the most suitable diagnostic imaging strategy for identifying clinically suspected fractures of the scaphoid bone in patients with normal radiographs. Therefore we looked at the diagnostic performance characteristics of the most used imaging modalities for this purpose: computed tomography, magnetic resonance imaging and bone scintigraphy. In July 2012, we searched the Cochrane Register of Diagnostic Test Accuracy Studies, MEDLINE, EMBASE, the Database of Abstracts of Reviews of Effects, the Cochrane Central Register of Controlled Trials, the NHS Economic Evaluation Database. In September 2012, we searched MEDION, ARIF, Current Controlled Trials, the World Health Organization (WHO) International Clinical Trials Registry Platform, conference proceedings and reference lists of all articles. We included all prospective or retrospective studies involving a consecutive series of patients of all ages that evaluated the accuracy of BS, CT or MRI, or any combination of these, for diagnosing suspected scaphoid fractures. We considered the use of one or two index tests or six-week follow-up radiographs as adequate reference standards. Two review authors independently screened titles and abstracts and assessed full-text reports of potentially eligible studies. The same authors extracted data from full-text reports and assessed methodological quality using the QUADAS checklist. For each index test, estimates of sensitivity and specificity from each study were plotted in ROC space; and forest plots were constructed for visual examination of variation in test accuracy. We performed meta-analyses using the HSROC model to produce summary estimates of sensitivity and specificity. We included 11 studies that looked at diagnostic accuracy of one or two index tests: four studies (277 suspected fractures) looked at CT, five studies (221 suspected fractures) looked at MRI and six studies (543 suspected fractures) looked at BS. Four of the studies made direct comparisons: two studies compared CT and MRI, one study compared CT and BS, and one study compared MRI and BS. Overall, the studies were of moderate to good quality, but relevant clinical information during evaluation of CT, MRI or BS was mostly unclear or unavailable.As few studies made direct comparisons between tests with the same participants, our results are based on data from indirect comparisons, which means that these results are more susceptible to bias due to confounding. Nonetheless, the direct comparisons showed similar patterns of differences in sensitivity and specificity as for the pooled indirect comparisons.Summary sensitivity and specificity of CT were 0.72 (95% confidence interval (CI) 0.36 to 0.92) and 0.99 (95% CI 0.71 to 1.00); for MRI, these were 0.88 (95% CI 0.64 to 0.97) and 1.00 (95% CI 0.38 to 1.00); for BS, these were 0.99 (95% CI 0.69 to 1.00) and 0.86 (95% CI 0.73 to 0.94). Indirect comparisons suggest that diagnostic accuracy of BS was significantly higher than CT and MRI; and CT and MRI have comparable diagnostic accuracy. The low prevalence of a true fracture among suspected fractures (median = 20%) means the lower specificity for BS is problematic. For example, in a cohort of 1000 patients, 112 will be over-treated when BS is used for diagnosis. If CT is used, only 8 will receive unnecessary treatment. In terms of missed fractures, BS will miss 2 fractures and CT will miss 56 fractures. Although quality of the included studies is moderate to good, findings are based on only 11 studies and the confidence intervals for the summary estimates are wide for all three tests. Well-designed direct comparison studies including CT, MRI and BS could give valuable additional information.Bone scintigraphy is statistically the best diagnostic modality to establish a definitive diagnosis in clinically suspected fractures when radiographs appear normal. However, physicians must keep in mind that BS is more invasive than the other modalities, with safety issues due to level of radiation exposure, as well as diagnostic delay of at least 72 hours. The number of overtreated patients is substantially lower with CT and MRI.Prior to performing comparative studies, there is a need to raise the initially detected prevalence of true fractures in order to reduce the effect of the relatively low specificity in daily practice. This can be achieved by improving clinical evaluation and initial radiographical assessment.

Twitter Demographics

The data shown below were collected from the profiles of 26 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 178 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Netherlands 1 <1%
Unknown 176 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 42 24%
Student > Bachelor 30 17%
Student > Ph. D. Student 19 11%
Researcher 16 9%
Student > Doctoral Student 13 7%
Other 38 21%
Unknown 20 11%
Readers by discipline Count As %
Medicine and Dentistry 98 55%
Nursing and Health Professions 21 12%
Social Sciences 6 3%
Pharmacology, Toxicology and Pharmaceutical Science 4 2%
Agricultural and Biological Sciences 4 2%
Other 21 12%
Unknown 24 13%

Attention Score in Context

This research output has an Altmetric Attention Score of 33. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 February 2017.
All research outputs
#405,046
of 12,101,174 outputs
Outputs from Cochrane database of systematic reviews
#891
of 7,978 outputs
Outputs of similar age
#11,011
of 231,876 outputs
Outputs of similar age from Cochrane database of systematic reviews
#33
of 201 outputs
Altmetric has tracked 12,101,174 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,978 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 231,876 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 95% of its contemporaries.
We're also able to compare this research output to 201 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.