↓ Skip to main content

PPI network analyses of human WD40 protein family systematically reveal their tendency to assemble complexes and facilitate the complex predictions

Overview of attention for article published in BMC Systems Biology, April 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
PPI network analyses of human WD40 protein family systematically reveal their tendency to assemble complexes and facilitate the complex predictions
Published in
BMC Systems Biology, April 2018
DOI 10.1186/s12918-018-0567-9
Pubmed ID
Authors

Xu-Dong Zou, Ke An, Yun-Dong Wu, Zhi-Qiang Ye

Abstract

WD40 repeat proteins constitute one of the largest families in eukaryotes, and widely participate in various fundamental cellular processes by interacting with other molecules. Based on individual WD40 proteins, previous work has demonstrated that their structural characteristics should confer great potential of interaction and complex formation, and has speculated that they may serve as hubs in the protein-protein interaction (PPI) network. However, what roles the whole family plays in organizing the PPI network, and whether this information can be utilized in complex prediction remain unclear. To address these issues, quantitative and systematic analyses of WD40 proteins from the perspective of PPI networks are highly required. In this work, we built two human PPI networks by using data sets with different confidence levels, and studied the network properties of the whole human WD40 protein family systematically. Our analyses have quantitatively confirmed that the human WD40 protein family, as a whole, tends to be hubs with an odds ratio of about 1.8 or greater, and the network decomposition has revealed that they are prone to enrich near the global center of the whole network with a fold change of two in the median k-values. By integrating expression profiles, we have further shown that WD40 hub proteins are inclined to be intramodular, which is indicative of complex assembling. Based on this information, we have further predicted 1674 potential WD40-associated complexes by choosing a clique-based method, which is more sensitive than others, and an indirect evaluation by co-expression scores has demonstrated its reliability. At the systems level but not sporadic examples' level, this work has provided rich knowledge for better understanding WD40 proteins' roles in organizing the PPI network. These findings and predicted complexes can offer valuable clues for prioritizing candidates for further studies.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 22%
Student > Doctoral Student 3 17%
Student > Bachelor 3 17%
Professor > Associate Professor 2 11%
Other 1 6%
Other 1 6%
Unknown 4 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 39%
Mathematics 1 6%
Agricultural and Biological Sciences 1 6%
Immunology and Microbiology 1 6%
Psychology 1 6%
Other 3 17%
Unknown 4 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 May 2018.
All research outputs
#21,709,675
of 24,226,848 outputs
Outputs from BMC Systems Biology
#1,007
of 1,135 outputs
Outputs of similar age
#291,183
of 330,491 outputs
Outputs of similar age from BMC Systems Biology
#35
of 47 outputs
Altmetric has tracked 24,226,848 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,135 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,491 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.