↓ Skip to main content

A method to quantify and value floodplain sediment and nutrient retention ecosystem services

Overview of attention for article published in Journal of Environmental Management, August 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (57th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
4 tweeters

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
102 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A method to quantify and value floodplain sediment and nutrient retention ecosystem services
Published in
Journal of Environmental Management, August 2018
DOI 10.1016/j.jenvman.2018.05.013
Pubmed ID
Authors

Kristina G. Hopkins, Gregory B. Noe, Fabiano Franco, Emily J. Pindilli, Stephanie Gordon, Marina J. Metes, Peter R. Claggett, Allen C. Gellis, Cliff R. Hupp, Dianna M. Hogan

Abstract

Floodplains provide critical ecosystem services to local and downstream communities by retaining floodwaters, sediments, and nutrients. The dynamic nature of floodplains is such that these areas can both accumulate sediment and nutrients through deposition, and export material downstream through erosion. Therefore, estimating floodplain sediment and nutrient retention should consider the net flux of both depositional and erosive processes. An ecosystem services framework was used to quantify and value the sediment and nutrient ecosystem service provided by floodplains in the Difficult Run watershed, a small (151 km2) suburban watershed located in the Piedmont of Virginia (USA). A sediment balance was developed for Difficult Run and two nested watersheds. The balance included upland sediment delivery to streams, stream bank flux, floodplain flux, and stream load. Upland sediment delivery was estimated using geospatial datasets and a modified Revised Universal Soil Loss Equation. Predictive models were developed to extrapolate field measurements of the flux of sediment, sediment-bound nitrogen (N), and sediment-bound phosphorus (P) from stream banks and floodplains to 3232 delineated stream segments in the study area. A replacement cost approach was used to estimate the economic value of the sediment and nutrient retention ecosystem service based on estimated net stream bank and floodplain flux of sediment-bound N for all streams in the study area. Results indicated the net fluvial fluxes of sediment, sediment-bound N, and sediment-bound P were -10,439 Mg yr-1 (net export), 57,300 kg-N yr-1 (net trapping), and 98 kg-P yr-1(net trapping), respectively. For sediment, floodplain retention was offset by substantial losses from stream bank erosion, particularly in headwater catchments, resulting in a net export of sediment. Nutrient retention in the floodplain exceeded that lost through stream bank erosion resulting in net retention of nutrients (TN and TP). Using a conservative cost estimate of $12.69 (USD) per kilogram of nitrogen, derived from wastewater treatment costs, the estimated annual value for sediment and nutrient retention on Difficult Run floodplains was $727,226 ± 194,220 USD/yr. Values and differences in floodplain nitrogen retention among stream reaches can be used to target areas for floodplain conservation and stream restoration. The methods presented are scalable and transferable to other areas if appropriate datasets are available for validation.

Twitter Demographics

The data shown below were collected from the profiles of 4 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 102 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 102 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 24 24%
Researcher 16 16%
Student > Master 15 15%
Student > Doctoral Student 9 9%
Unspecified 4 4%
Other 15 15%
Unknown 19 19%
Readers by discipline Count As %
Environmental Science 26 25%
Earth and Planetary Sciences 12 12%
Agricultural and Biological Sciences 8 8%
Engineering 7 7%
Economics, Econometrics and Finance 4 4%
Other 13 13%
Unknown 32 31%

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 August 2020.
All research outputs
#6,196,183
of 19,049,821 outputs
Outputs from Journal of Environmental Management
#1,407
of 4,271 outputs
Outputs of similar age
#113,604
of 290,597 outputs
Outputs of similar age from Journal of Environmental Management
#32
of 83 outputs
Altmetric has tracked 19,049,821 research outputs across all sources so far. This one is in the 46th percentile – i.e., 46% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,271 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.9. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 290,597 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.
We're also able to compare this research output to 83 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.