↓ Skip to main content

5-hydroxytryptamine has an endothelium-derived hyperpolarizing factor-like effect on coronary flow in isolated rat hearts

Overview of attention for article published in Journal of Biomedical Science, June 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
5-hydroxytryptamine has an endothelium-derived hyperpolarizing factor-like effect on coronary flow in isolated rat hearts
Published in
Journal of Biomedical Science, June 2015
DOI 10.1186/s12929-015-0149-8
Pubmed ID
Authors

Ching-Chia Chang Chien, Ming-Jai Su

Abstract

5-hydroxytryptamine (5-HT)-induced coronary artery responses have both vasoconstriction and vasorelaxation components. The vasoconstrictive effects of 5-HT have been well studied while the mechanism(s) of how 5-HT causes relaxation of coronary arteries has been less investigated. In isolated rat hearts, 5-HT-induced coronary flow increases are partially resistant to the nitric oxide synthase inhibitor Nω-Nitro-L-arginine methyl ester (L-NAME) and are blocked by 5-HT7 receptor antagonists. In the present study, we investigated the role of 5-HT7 receptor in 5-HT-induced coronary flow increases in isolated rat hearts in the absence of L-NAME, and we also evaluated the involvement of endothelium-derived hyperpolarizing factor (EDHF) in 5-HT-induced coronary flow increases in L-NAME-treated hearts with the inhibitors of arachidonic acid metabolism and the blockers of Ca(2+)-activated K(+) channels. In isolated rat hearts, 5-HT and the 5-HT7 receptor agonist 5-carboxamidotryptamine induced coronary flow increases, and both of these effects were blocked by the selective 5-HT7 receptor antagonist SB269970; in SB269970-treated hearts, 5-HT induced coronary flow decreases, which effect was blocked by the 5-HT2A receptor blocker R96544. In L-NAME-treated hearts, 5-HT-induced coronary flow increases were blocked by the phospholipase A2 inhibitor quinacrine and the cytochrome P450 inhibitor SKF525A, but were not inhibited by the cyclooxygenase inhibitor indomethacin. As to the effects of the Ca(2+)-activated K(+) channel blockers, 5-HT-induced coronary flow increases in L-NAME-treated hearts were inhibited by TRAM-34 (intermediate-conductance Ca(2+)-activated K(+) channel blocker) and UCL1684 (small-conductance Ca(2+)-activated K(+) channel blocker), but effects of the large-conductance Ca(2+)-activated K(+) channel blockers on 5-HT-induced coronary flow increases were various: penitrem A and paxilline did not significantly affect 5-HT-induced coronary flow responses while tetraethylammonium suppressed the coronary flow increases elicited by 5-HT. In the present study, we found that 5-HT-induced coronary flow increases are mediated by the activation of 5-HT7 receptor in rat hearts in the absence of L-NAME. Metabolites of cytochrome P450s, small-conductance Ca(2+)-activated K(+) channel, and intermediate-conductance Ca(2+)-activated K(+) channel are involved in 5-HT-induced coronary flow increases in L-NAME-treated hearts, which resemble the mechanisms of EDHF-induced vasorelaxation. The role of large-conductance Ca(2+)-activated K(+) channel in 5-HT-induced coronary flow increases in L-NAME-treated hearts needs further investigation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 38%
Professor 1 13%
Student > Master 1 13%
Unknown 3 38%
Readers by discipline Count As %
Medicine and Dentistry 3 38%
Neuroscience 1 13%
Pharmacology, Toxicology and Pharmaceutical Science 1 13%
Unknown 3 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 June 2015.
All research outputs
#17,285,668
of 25,373,627 outputs
Outputs from Journal of Biomedical Science
#753
of 1,101 outputs
Outputs of similar age
#157,214
of 264,135 outputs
Outputs of similar age from Journal of Biomedical Science
#13
of 20 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,101 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,135 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.