↓ Skip to main content

Vascular segmentation in hepatic CT images using adaptive threshold fuzzy connectedness method

Overview of attention for article published in BioMedical Engineering OnLine, June 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
googleplus
1 Google+ user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Vascular segmentation in hepatic CT images using adaptive threshold fuzzy connectedness method
Published in
BioMedical Engineering OnLine, June 2015
DOI 10.1186/s12938-015-0055-z
Pubmed ID
Authors

Xiaoxi Guo, Shaohui Huang, Xiaozhu Fu, Boliang Wang, Xiaoyang Huang

Abstract

Fuzzy connectedness method has shown its effectiveness for fuzzy object extraction in recent years. However, two problems may occur when applying it to hepatic vessel segmentation task. One is the excessive computational cost, and the other is the difficulty of choosing a proper threshold value for final segmentation. In this paper, an accelerated strategy based on a lookup table was presented first which can reduce the connectivity scene calculation time and achieve a speed-up factor of above 2. When the computing of the fuzzy connectedness relations is finished, a threshold is needed to generate the final result. Currently the threshold is preset by users. Since different thresholds may produce different outcomes, how to determine a proper threshold is crucial. According to our analysis of the hepatic vessel structure, a watershed-like method was used to find the optimal threshold. Meanwhile, by using Ostu algorithm to calculate the parameters for affinity relations and assigning the seed with the mean value, it is able to reduce the influence on the segmentation result caused by the location of the seed and enhance the robustness of fuzzy connectedness method. Experiments based on four different datasets demonstrate the efficiency of the lookup table strategy. These experiments also show that an adaptive threshold found by watershed-like method can always generate correct segmentation results of hepatic vessels. Comparing to a refined region-growing algorithm that has been widely used for hepatic vessel segmentation, fuzzy connectedness method has advantages in detecting vascular edge and generating more than one vessel system through the weak connectivity of the vessel ends. An improved algorithm based on fuzzy connectedness method is proposed. This algorithm has improved the performance of fuzzy connectedness method in hepatic vessel segmentation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 19%
Student > Ph. D. Student 3 19%
Student > Postgraduate 2 13%
Researcher 1 6%
Student > Doctoral Student 1 6%
Other 0 0%
Unknown 6 38%
Readers by discipline Count As %
Engineering 3 19%
Computer Science 2 13%
Medicine and Dentistry 2 13%
Psychology 1 6%
Unknown 8 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 June 2015.
All research outputs
#15,170,530
of 25,374,917 outputs
Outputs from BioMedical Engineering OnLine
#371
of 867 outputs
Outputs of similar age
#135,219
of 278,847 outputs
Outputs of similar age from BioMedical Engineering OnLine
#9
of 23 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 867 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 278,847 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.