↓ Skip to main content

One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, May 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification
Published in
Biotechnology for Biofuels and Bioproducts, May 2018
DOI 10.1186/s13068-018-1140-x
Pubmed ID
Authors

Shaolong Sun, Lidan Zhang, Fang Liu, Xiaolin Fan, Run-Cang Sun

Abstract

To increase the production of bioethanol, a two-step process based on hydrothermal and dilute alkaline treatment was applied to reduce the natural resistance of biomass. However, the process required a large amount of water and a long operation time due to the solid/liquid separation before the alkaline treatment, which led to decrease the pure economic profit for production of bioethanol. Therefore, four one-step processes based on order of hydrothermal and alkaline treatment have been developed to enhance concentration of glucose of wheat straw by enzymatic saccharification. The aim of the present study was to systematically evaluated effect for different one-step processes by analyzing the physicochemical properties (composition, structural change, crystallinity, surface morphology, and BET surface area) and enzymatic saccharification of the treated substrates. In this study, hemicelluloses and lignins were removed from wheat straw and the morphologic structures were destroyed to various extents during the four one-step processes, which were favorable for cellulase absorption on cellulose. A positive correlation was also observed between the crystallinity and enzymatic saccharification rate of the substrate under the conditions given. The surface area of the substrate was positively related to the concentration of glucose in this study. As compared to the control (3.0 g/L) and treated substrates (11.2-14.6 g/L) obtained by the other three one-step processes, the substrate treated by one-step process based on successively hydrothermal and alkaline treatment had a maximum glucose concentration of 18.6 g/L, which was due to the high cellulose concentration and surface area for the substrate, accompanying with removal of large amounts of lignins and hemicelluloses. The present study demonstrated that the order of hydrothermal and alkaline treatment had significant effects on the physicochemical properties and enzymatic saccharification of wheat straw. The one-step process based on successively hydrothermal and alkaline treatment is a simple operating and economical feasible method for the production of glucose, which will be further converted into bioethanol.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 11%
Researcher 3 8%
Student > Doctoral Student 2 5%
Student > Bachelor 2 5%
Student > Ph. D. Student 2 5%
Other 4 11%
Unknown 20 54%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 16%
Chemistry 4 11%
Chemical Engineering 3 8%
Biochemistry, Genetics and Molecular Biology 1 3%
Arts and Humanities 1 3%
Other 2 5%
Unknown 20 54%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 May 2018.
All research outputs
#22,767,715
of 25,382,440 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#1,416
of 1,578 outputs
Outputs of similar age
#298,627
of 339,299 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#44
of 49 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,299 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 49 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.