↓ Skip to main content

Interventions for increasing fruit and vegetable consumption in children aged five years and under

Overview of attention for article published in Cochrane database of systematic reviews, May 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

twitter
122 tweeters
facebook
7 Facebook pages

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
211 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Interventions for increasing fruit and vegetable consumption in children aged five years and under
Published in
Cochrane database of systematic reviews, May 2018
DOI 10.1002/14651858.cd008552.pub5
Pubmed ID
Authors

Rebecca K Hodder, Kate M O'Brien, Fiona G Stacey, Rebecca J Wyse, Tara Clinton-McHarg, Flora Tzelepis, Erica L James, Kate M Bartlem, Nicole K Nathan, Rachel Sutherland, Emma Robson, Sze Lin Yoong, Luke Wolfenden

Abstract

Insufficient consumption of fruits and vegetables in childhood increases the risk of future non-communicable diseases, including cardiovascular disease. Interventions to increase consumption of fruit and vegetables, such as those focused on specific child-feeding strategies and parent nutrition education interventions in early childhood may therefore be an effective strategy in reducing this disease burden. To assess the effectiveness, cost effectiveness and associated adverse events of interventions designed to increase the consumption of fruit, vegetables or both amongst children aged five years and under. We searched CENTRAL, MEDLINE, Embase and two clinical trials registries to identify eligible trials on 25 January 2018. We searched Proquest Dissertations and Theses in November 2017. We reviewed reference lists of included trials and handsearched three international nutrition journals. We contacted authors of included studies to identify further potentially relevant trials. We included randomised controlled trials, including cluster-randomised controlled trials and cross-over trials, of any intervention primarily targeting consumption of fruit, vegetables or both among children aged five years and under, and incorporating a dietary or biochemical assessment of fruit or vegetable consumption. Two review authors independently screened titles and abstracts of identified papers; a third review author resolved disagreements. Two review authors independently extracted data and assessed the risks of bias of included studies; a third review author resolved disagreements. Due to unexplained heterogeneity, we used random-effects models in meta-analyses for the primary review outcomes where we identified sufficient trials. We calculated standardised mean differences (SMDs) to account for the heterogeneity of fruit and vegetable consumption measures. We conducted assessments of risks of bias and evaluated the quality of evidence (GRADE approach) using Cochrane procedures. We included 63 trials with 178 trial arms and 11,698 participants. Thirty-nine trials examined the impact of child-feeding practices (e.g. repeated food exposure) in increasing child vegetable intake. Fourteen trials examined the impact of parent nutrition education in increasing child fruit and vegetable intake. Nine studies examined the impact of multicomponent interventions (e.g. parent nutrition education and preschool policy changes) in increasing child fruit and vegetable intake. One study examined the effect of a nutrition education intervention delivered to children in increasing child fruit and vegetable intake.We judged 14 of the 63 included trials as free from high risks of bias across all domains; performance, detection and attrition bias were the most common domains judged at high risk of bias for the remaining studies.There is very low quality evidence that child-feeding practices versus no intervention may have a small positive effect on child vegetable consumption equivalent to an increase of 3.50 g as-desired consumption of vegetables (SMD 0.33, 95% CI 0.13 to 0.54; participants = 1741; studies = 13). Multicomponent interventions versus no intervention may have a very small effect on child consumption of fruit and vegetables (SMD 0.35, 95% CI 0.04 to 0.66; participants = 2009; studies = 5; low-quality evidence), equivalent to an increase of 0.37 cups of fruit and vegetables per day. It is uncertain whether there are any short-term differences in child consumption of fruit and vegetables in meta-analyses of trials examining parent nutrition education versus no intervention (SMD 0.12, 95% CI -0.03 to 0.28; participants = 3078; studies = 11; very low-quality evidence).Insufficient data were available to assess long-term effectiveness, cost effectiveness and unintended adverse consequences of interventions. Studies reported receiving governmental or charitable funds, except for four studies reporting industry funding. Despite identifying 63 eligible trials of various intervention approaches, the evidence for how to increase children's fruit and vegetable consumption remains limited. There was very low- and low-quality evidence respectively that child-feeding practice and multicomponent interventions may lead to very small increases in fruit and vegetable consumption in children aged five years and younger. It is uncertain whether parent nutrition education interventions are effective in increasing fruit and vegetable consumption in children aged five years and younger. Given that the quality of the evidence is very low or low, future research will likely change estimates and conclusions. Long-term follow-up is required and future research should adopt more rigorous methods to advance the field.This is a living systematic review. Living systematic reviews offer a new approach to review updating, in which the review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.

Twitter Demographics

The data shown below were collected from the profiles of 122 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 211 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 211 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 37 18%
Student > Bachelor 28 13%
Researcher 22 10%
Student > Doctoral Student 20 9%
Unspecified 18 9%
Other 57 27%
Unknown 29 14%
Readers by discipline Count As %
Medicine and Dentistry 41 19%
Nursing and Health Professions 40 19%
Agricultural and Biological Sciences 19 9%
Unspecified 18 9%
Social Sciences 11 5%
Other 38 18%
Unknown 44 21%

Attention Score in Context

This research output has an Altmetric Attention Score of 74. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 June 2020.
All research outputs
#299,680
of 15,798,816 outputs
Outputs from Cochrane database of systematic reviews
#688
of 11,293 outputs
Outputs of similar age
#10,548
of 281,565 outputs
Outputs of similar age from Cochrane database of systematic reviews
#24
of 180 outputs
Altmetric has tracked 15,798,816 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,293 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 23.5. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 281,565 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 180 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.