↓ Skip to main content

Devices and dressings to secure peripheral venous catheters to prevent complications

Overview of attention for article published in Cochrane database of systematic reviews, June 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

20 tweeters
1 Facebook page


39 Dimensions

Readers on

152 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Devices and dressings to secure peripheral venous catheters to prevent complications
Published in
Cochrane database of systematic reviews, June 2015
DOI 10.1002/14651858.cd011070.pub2
Pubmed ID

Nicole Marsh, Joan Webster, Gabor Mihala, Claire M Rickard


A peripheral venous catheter (PVC) is typically used for short-term delivery of intravascular fluids and medications. It is an essential element of modern medicine and the most frequent invasive procedure performed in hospitals. However, PVCs often fail before intravenous treatment is completed: this can occur because the device is not adequately attached to the skin, allowing the PVC to fall out, leading to complications such as phlebitis (irritation or inflammation to the vein wall), infiltration (fluid leaking into surrounding tissues) or occlusion (blockage). An inadequately secured PVC also increases the risk of catheter-related bloodstream infection (CRBSI), as the pistoning action (moving back and forth in the vein) of the catheter can allow migration of organisms along the catheter and into the bloodstream. Despite the many dressings and securement devices available, the impact of different securement techniques for increasing PVC dwell time is still unclear; there is a need to provide guidance for clinicians by reviewing current studies systematically. To assess the effects of PVC dressings and securement devices on the incidence of PVC failure. We searched the following electronic databases to identify reports of relevant randomised controlled trials (RCTs): the Cochrane Wounds Group Register (searched 08 April 2015): The Cochrane Central Register of Controlled Trials (CENTRAL; 2015, Issue 3), Ovid MEDLINE (1946 to March 7 2015); Ovid MEDLINE (In-Process & Other Non-Indexed Citations, March 7 2015); Ovid EMBASE (1974 to March 7 2015); and EBSCO CINAHL (1982 to March 8 2015). RCTs or cluster RCTs comparing different dressings or securement devices for the stabilisation of PVCs. Cross-over trials were ineligible for inclusion, unless data for the first treatment period could be obtained. Two review authors independently selected studies, assessed trial quality and extracted data. We contacted study authors for missing information. We used standard methodological procedures expected by Cochrane. We included six RCTs (1539 participants) in this review. Trial sizes ranged from 50 to 703 participants. These six trials made four comparisons, namely: transparent dressings versus gauze; bordered transparent dressings versus a securement device; bordered transparent dressings versus tape; and transparent dressing versus sticking plaster. There is very low quality evidence of fewer catheter dislodgements or accidental removals with transparent dressings compared with gauze (two studies, 278 participants, RR 0.40; 95% CI 0.17 to 0.92, P = 0.03%). The relative effects of transparent dressings and gauze on phlebitis (RR 0.89; 95% CI 0.47 to 1.68) and infiltration (RR 0.80; 95% CI 0.48 to 1.33) are unclear. The relative effects on PVC failure of a bordered transparent dressing and a securement device have been assessed in only one small study and these were unclear. There was very low quality evidence from the same single study of less frequent dislodgement or accidental catheter removal with bordered transparent dressings than securement devices (RR 0.14, 95% CI 0.03 to 0.63) but more phlebitis with bordered dressings (RR 8.11, 95% CI 1.03 to 64.02) (very low quality evidence). A small single study compared bordered transparent dressings with tape and found very low quality evidence of more PVC failure with the bordered dressing (RR 1.84, 95% CI 1.08 to 3.11) but the relative effects on dislodgement were not clear (very low quality evidence). The relative effects of transparent dressings and a sticking plaster have only been compared in one small study and are unclear. More high quality RCTs are required to determine the relative effects of alternative PVC dressings and securement devices. It is not clear if any one dressing or securement device is better than any other in securing peripheral venous catheters. There is a need for further, independent high quality trials to evaluate the many traditional as well as the newer, high use products. Given the large cost differences between some different dressings and securement devices, future trials should include a robust cost-effectiveness analysis.

Twitter Demographics

The data shown below were collected from the profiles of 20 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 152 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 <1%
Australia 1 <1%
Canada 1 <1%
Spain 1 <1%
United States 1 <1%
Unknown 147 97%

Demographic breakdown

Readers by professional status Count As %
Student > Master 28 18%
Student > Bachelor 26 17%
Other 16 11%
Researcher 15 10%
Student > Ph. D. Student 11 7%
Other 27 18%
Unknown 29 19%
Readers by discipline Count As %
Medicine and Dentistry 48 32%
Nursing and Health Professions 48 32%
Engineering 4 3%
Social Sciences 3 2%
Immunology and Microbiology 2 1%
Other 10 7%
Unknown 37 24%

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 February 2019.
All research outputs
of 14,263,181 outputs
Outputs from Cochrane database of systematic reviews
of 10,933 outputs
Outputs of similar age
of 232,993 outputs
Outputs of similar age from Cochrane database of systematic reviews
of 264 outputs
Altmetric has tracked 14,263,181 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,933 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.7. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 232,993 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 264 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.