↓ Skip to main content

Blue‐light filtering intraocular lenses (IOLs) for protecting macular health

Overview of attention for article published in Cochrane database of systematic reviews, May 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

news
7 news outlets
blogs
5 blogs
policy
1 policy source
twitter
133 X users
facebook
4 Facebook pages
wikipedia
4 Wikipedia pages
video
1 YouTube creator

Citations

dimensions_citation
77 Dimensions

Readers on

mendeley
261 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Blue‐light filtering intraocular lenses (IOLs) for protecting macular health
Published in
Cochrane database of systematic reviews, May 2018
DOI 10.1002/14651858.cd011977.pub2
Pubmed ID
Authors

Laura E Downie, Ljoudmila Busija, Peter R Keller

Abstract

An intraocular lens (IOL) is a synthetic lens that is surgically implanted within the eye following removal of the crystalline lens, during cataract surgery. While all modern IOLs attenuate the transmission of ultra-violet (UV) light, some IOLs, called blue-blocking or blue-light filtering IOLs, also reduce short-wavelength visible light transmission. The rationale for blue-light filtering IOLs derives primarily from cell culture and animal studies, which suggest that short-wavelength visible light can induce retinal photoxicity. Blue-light filtering IOLs have been suggested to impart retinal protection and potentially prevent the development and progression of age-related macular degeneration (AMD). We sought to investigate the evidence relating to these suggested benefits of blue-light filtering IOLs, and to consider any potential adverse effects. To assess the effects of blue-light filtering IOLs compared with non-blue-light filtering IOLs, with respect to providing protection to macular health and function. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2017, Issue 9); Ovid MEDLINE; Ovid Embase; LILACS; the ISRCTN registry; ClinicalTrials.gov and the ICTRP. The date of the search was 25 October 2017. We included randomised controlled trials (RCTs), involving adult participants undergoing cataract extraction, where a blue-light filtering IOL was compared with an equivalent non-blue-light filtering IOL. The prespecified primary outcome was the change in distance best-corrected visual acuity (BCVA), as a continuous outcome, between baseline and 12 months of follow-up. Prespecified secondary outcomes included postoperative contrast sensitivity, colour discrimination, macular pigment optical density (MPOD), proportion of eyes with a pathological finding at the macula (including, but not limited to the development or progression of AMD, or both), daytime alertness, reaction time and patient satisfaction. We evaluated findings related to ocular and systemic adverse effects.Two review authors independently screened abstracts and full-text articles, extracted data from eligible RCTs and judged the risk of bias using the Cochrane tool. We reached a consensus on any disagreements by discussion. Where appropriate, we pooled data relating to outcomes and used random-effects or fixed-effect models for the meta-analyses. We summarised the overall certainty of the evidence using GRADE. We included 51 RCTs from 17 different countries, although most studies either did not report relevant outcomes, or provided data in a format that could not be extracted. Together, the included studies considered the outcomes of IOL implantation in over 5000 eyes. The number of participants ranged from 13 to 300, and the follow-up period ranged from one month to five years. Only two of the studies had a trial registry record and no studies referred to a published protocol. We did not judge any of the studies to have a low risk of bias in all seven domains. We judged approximately two-thirds of the studies to have a high risk of bias in domains relating to 'blinding of participants and personnel' (performance bias) and 'blinding of outcome assessment' (detection bias).We found with moderate certainty, that distance BCVA with a blue-light filtering IOL, at six to 18 months postoperatively, and measured in logMAR, was not clearly different to distance BCVA with a non-blue-light filtering IOL (mean difference (MD) -0.01 logMAR, 95% confidence interval (CI) -0.03 to 0.02, P = 0.48; 2 studies, 131 eyes).There was very low-certainty evidence relating to any potential inter-intervention difference for the proportion of eyes that developed late-stage AMD at three years of follow-up, or any stage of AMD at one year of follow-up, as data derived from one trial and two trials respectively, and there were no events in either IOL intervention group, for either outcome. There was very low-certainty evidence for the outcome for the proportion of participants who lost 15 or more letters of distance BCVA at six months of follow-up; two trials that considered a total of 63 eyes reported no events, in either IOL intervention group.There were no relevant, combinable data available for outcomes relating to the effect on contrast sensitivity at six months, the proportion of eyes with a measurable loss of colour discrimination from baseline at six months, or the proportion of participants with adverse events with a probable causal link with the study interventions after six months.We were unable to draw reliable conclusions on the relative equivalence or superiority of blue-light filtering IOLs versus non-blue-light filtering IOLs in relation to longer-term effects on macular health. We were also not able to determine with any certainty whether blue-light filtering IOLs have any significant effects on MPOD, contrast sensitivity, colour discrimination, daytime alertness, reaction time or patient satisfaction, relative to non-blue-light filtering IOLs. This systematic review shows with moderate certainty that there is no clinically meaningful difference in short-term BCVA with the two types of IOLs. Further, based upon available data, these findings suggest that there is no clinically meaningful difference in short-term contrast sensitivity with the two interventions, although there was a low level of certainty for this outcome due to a small number of included studies and their inherent risk of bias. Based upon current, best-available research evidence, it is unclear whether blue-light filtering IOLs preserve macular health or alter risks associated with the development and progression of AMD, or both. Further research is required to fully understand the effects of blue-light filtering IOLs for providing protection to macular health and function.

X Demographics

X Demographics

The data shown below were collected from the profiles of 133 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 261 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 261 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 33 13%
Student > Master 26 10%
Other 20 8%
Researcher 19 7%
Student > Ph. D. Student 18 7%
Other 52 20%
Unknown 93 36%
Readers by discipline Count As %
Medicine and Dentistry 83 32%
Nursing and Health Professions 20 8%
Neuroscience 11 4%
Pharmacology, Toxicology and Pharmaceutical Science 6 2%
Biochemistry, Genetics and Molecular Biology 5 2%
Other 32 12%
Unknown 104 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 203. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 October 2023.
All research outputs
#194,546
of 25,505,015 outputs
Outputs from Cochrane database of systematic reviews
#335
of 13,142 outputs
Outputs of similar age
#4,254
of 344,197 outputs
Outputs of similar age from Cochrane database of systematic reviews
#12
of 188 outputs
Altmetric has tracked 25,505,015 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,142 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.7. This one has done particularly well, scoring higher than 97% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 344,197 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 188 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.