↓ Skip to main content

Metabolic plasticity maintains proliferation in pyruvate dehydrogenase deficient cells

Overview of attention for article published in Cancer & Metabolism, June 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
76 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Metabolic plasticity maintains proliferation in pyruvate dehydrogenase deficient cells
Published in
Cancer & Metabolism, June 2015
DOI 10.1186/s40170-015-0134-4
Pubmed ID
Authors

Kartik N. Rajagopalan, Robert A. Egnatchik, Maria A. Calvaruso, Ajla T. Wasti, Mahesh S. Padanad, Lindsey K. Boroughs, Bookyung Ko, Christopher T. Hensley, Melih Acar, Zeping Hu, Lei Jiang, Juan M. Pascual, Pier Paolo Scaglioni, Ralph J. DeBerardinis

Abstract

Pyruvate dehydrogenase (PDH) occupies a central node of intermediary metabolism, converting pyruvate to acetyl-CoA, thus committing carbon derived from glucose to an aerobic fate rather than an anaerobic one. Rapidly proliferating tissues, including human tumors, use PDH to generate energy and macromolecular precursors. However, evidence supports the benefits of constraining maximal PDH activity under certain contexts, including hypoxia and oncogene-induced cell growth. Although PDH is one of the most widely studied enzyme complexes in mammals, its requirement for cell growth is unknown. In this study, we directly addressed whether PDH is required for mammalian cells to proliferate. We genetically suppressed expression of the PDHA1 gene encoding an essential subunit of the PDH complex and characterized the effects on intermediary metabolism and cell proliferation using a combination of stable isotope tracing and growth assays. Surprisingly, rapidly dividing cells tolerated loss of PDH activity without major effects on proliferative rates in complete medium. PDH suppression increased reliance on extracellular lipids, and in some cell lines, reducing lipid availability uncovered a modest growth defect that could be completely reversed by providing exogenous-free fatty acids. PDH suppression also shifted the source of lipogenic acetyl-CoA from glucose to glutamine, and this compensatory pathway required a net reductive isocitrate dehydrogenase (IDH) flux to produce a source of glutamine-derived acetyl-CoA for fatty acids. By deleting the cytosolic isoform of IDH (IDH1), the enhanced contribution of glutamine to the lipogenic acetyl-CoA pool during PDHA1 suppression was eliminated, and growth was modestly suppressed. Although PDH suppression substantially alters central carbon metabolism, the data indicate that rapid cell proliferation occurs independently of PDH activity. Our findings reveal that this central enzyme is essentially dispensable for growth and proliferation of both primary cells and established cell lines. We also identify the compensatory mechanisms that are activated under PDH deficiency, namely scavenging of extracellular lipids and lipogenic acetyl-CoA production from reductive glutamine metabolism through IDH1.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 76 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 75 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 30%
Researcher 16 21%
Student > Master 9 12%
Student > Doctoral Student 4 5%
Student > Postgraduate 3 4%
Other 7 9%
Unknown 14 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 26 34%
Agricultural and Biological Sciences 17 22%
Medicine and Dentistry 7 9%
Computer Science 2 3%
Chemistry 2 3%
Other 5 7%
Unknown 17 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 July 2015.
All research outputs
#14,231,577
of 22,816,807 outputs
Outputs from Cancer & Metabolism
#119
of 204 outputs
Outputs of similar age
#135,480
of 263,394 outputs
Outputs of similar age from Cancer & Metabolism
#1
of 2 outputs
Altmetric has tracked 22,816,807 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 204 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,394 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 2 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them