↓ Skip to main content

Differential regulation of nimodipine-sensitive and -insensitive Ca2+ influx by the Na+/Ca2+ exchanger and mitochondria in the rat suprachiasmatic nucleus neurons

Overview of attention for article published in Journal of Biomedical Science, May 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential regulation of nimodipine-sensitive and -insensitive Ca2+ influx by the Na+/Ca2+ exchanger and mitochondria in the rat suprachiasmatic nucleus neurons
Published in
Journal of Biomedical Science, May 2018
DOI 10.1186/s12929-018-0447-z
Pubmed ID
Authors

Pi-Cheng Cheng, Yi-Chi Wang, Ya-Shuan Chen, Ruo-Ciao Cheng, Jyh-Jeen Yang, Rong-Chi Huang

Abstract

Transmembrane Ca2+ influx is critical for molecular rhythmicity, metabolic activity, and neuropeptide release in the central clock of the suprachiasmatic nucleus (SCN). We previously reported that both the Na+/Ca2+ exchanger (NCX) and mitochondria play a role in regulating intracellular Ca2+ homeostasis in the rat SCN neurons. Here we present evidence to show differential regulation by NCX and mitochondria of nimodipine-sensitive and -insensitive Ca2+ influx. Ratiometric Ca2+ imaging was used to measure change in [Ca2+]i and patch clamp recordings to study spontaneous firing, membrane potential, and voltage-dependent Ca2+ channels in neurons from reduced SCN slice preparations. Immunofluorescent staining was used to determine the distribution pattern of CaV1.2 and CaV1.3 and their colocalization with NCX1. Ratiometric Ca2+ imaging indicates that nimodipine (2 μM) blocked most of 20 (mM) K+-induced, but less so of 50 K+-induced, Ca2+ rise. The nimodipine-sensitive 50 K+-induced Ca2+ transient rose more rapidly but decayed similarly with the nimodipine-insensitive component, suggesting both components were extruded by NCX. Immunofluorescent stains showed the expression of both CaV1.2 and CaV1.3 and their colocalization with NCX1, whereas functional studies suggest that CaV1.2 mediated most of the nimodipine-sensitive Ca2+ rise but had insignificant effect on spontaneous firing. After normalization relative to the Ca2+-free solution, nimodipine reduced ~ 65% of basal Ca2+ influx, and TTX lowered it by ~ 35%, leaving ~ 25% basal Ca2+ influx in the combined presence of TTX and nimodipine. With the mitochondrial uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) to inhibit mitochondrial Ca2+ uptake, 20 K+-induced Ca2+ transients became larger and slower, both in the absence and presence of nimodipine. FCCP markedly enhanced nimodipine-insensitive, but not nimodipine-sensitive, Ca2+ transients, suggesting that mitochondria preferentially buffer nimodipine-insensitive Ca2+ influx. Results from using CaV2 channel blockers further indicate that FCCP enhanced Ca2+ transients mediated by N-, P/Q-, and the blocker cocktail-insensitive Ca2+ channels. The differential regulation of transmembrane Ca2+ influx by NCX and mitochondria suggests that Ca2+ entry via different sources may be regulated differently to play different roles in SCN physiology.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 25%
Student > Bachelor 2 17%
Student > Doctoral Student 2 17%
Researcher 1 8%
Professor > Associate Professor 1 8%
Other 0 0%
Unknown 3 25%
Readers by discipline Count As %
Neuroscience 5 42%
Agricultural and Biological Sciences 2 17%
Medicine and Dentistry 2 17%
Unknown 3 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 May 2018.
All research outputs
#17,292,294
of 25,382,440 outputs
Outputs from Journal of Biomedical Science
#753
of 1,101 outputs
Outputs of similar age
#221,987
of 343,970 outputs
Outputs of similar age from Journal of Biomedical Science
#9
of 14 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,101 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.1. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 343,970 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.