↓ Skip to main content

Spatiotemporal remote sensing of ecosystem change and causation across Alaska

Overview of attention for article published in Global Change Biology, May 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

news
3 news outlets
twitter
15 tweeters

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Spatiotemporal remote sensing of ecosystem change and causation across Alaska
Published in
Global Change Biology, May 2018
DOI 10.1111/gcb.14279
Pubmed ID
Authors

Neal J. Pastick, M. Torre Jorgenson, Scott J. Goetz, Benjamin M. Jones, Bruce K. Wylie, Burke J. Minsley, Hélène Genet, Joseph F. Knight, David K. Swanson, Janet C. Jorgenson

Abstract

Contemporary climate change in Alaska has resulted in amplified rates of press and pulse disturbances that drive ecosystem change with significant consequences for socio-environmental systems. Despite the vulnerability of Arctic and boreal landscapes to change, little has been done to characterize landscape change and associated drivers across northern high-latitude ecosystems. Here we characterize the historical sensitivity of Alaska's ecosystems to environmental change and anthropogenic disturbances using expert knowledge, remote sensing data, and spatiotemporal analyses and modeling. Time-series analysis of moderate-and high-resolution imagery was used to characterize land- and water-surface dynamics across Alaska. Some 430,000 interpretations of ecological and geomorphological change were made using historical air photos and satellite imagery, and corroborate land-surface greening, browning, and wetness/moisture trend parameters derived from peak-growing season Landsat imagery acquired from 1984 to 2015. The time series of change metrics, together with climatic data and maps of landscape characteristics, were incorporated into a modeling framework for mapping and understanding of drivers of change throughout Alaska. According to our analysis, approximately 13% (~174,000 ± 8700 km2 ) of Alaska has experienced directional change in the last 32 years (±95% confidence intervals). At the ecoregions level, substantial increases in remotely sensed vegetation productivity were most pronounced in western and northern foothills of Alaska, which is explained by vegetation growth associated with increasing air temperatures. Significant browning trends were largely the result of recent wildfires in interior Alaska, but browning trends are also driven by increases in evaporative demand and surface-water gains that have predominately occurred over warming permafrost landscapes. Increased rates of photosynthetic activity are associated with stabilization and recovery processes following wildfire, timber harvesting, insect damage, thermokarst, glacial retreat, and lake infilling and drainage events. Our results fill a critical gap in the understanding of historical and potential future trajectories of change in northern high-latitude regions.

Twitter Demographics

The data shown below were collected from the profiles of 15 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 41%
Student > Ph. D. Student 6 18%
Other 5 15%
Unspecified 4 12%
Student > Postgraduate 2 6%
Other 3 9%
Readers by discipline Count As %
Environmental Science 14 41%
Unspecified 6 18%
Agricultural and Biological Sciences 6 18%
Earth and Planetary Sciences 5 15%
Computer Science 2 6%
Other 1 3%

Attention Score in Context

This research output has an Altmetric Attention Score of 36. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 July 2018.
All research outputs
#400,631
of 12,395,352 outputs
Outputs from Global Change Biology
#472
of 3,380 outputs
Outputs of similar age
#18,554
of 271,025 outputs
Outputs of similar age from Global Change Biology
#33
of 127 outputs
Altmetric has tracked 12,395,352 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,380 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 19.5. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 271,025 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 127 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.