↓ Skip to main content

Cell cycle accumulation of the proliferating cell nuclear antigen PCN-1 transitions from continuous in the adult germline to intermittent in the early embryo of C. elegans

Overview of attention for article published in BMC Developmental Biology, May 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
107 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cell cycle accumulation of the proliferating cell nuclear antigen PCN-1 transitions from continuous in the adult germline to intermittent in the early embryo of C. elegans
Published in
BMC Developmental Biology, May 2018
DOI 10.1186/s12861-018-0171-7
Pubmed ID
Authors

Zuzana Kocsisova, Kerry Kornfeld, Tim Schedl

Abstract

The proliferating cell nuclear antigen (PCNA or PCN-1 in C. elegans), an essential processivity factor for DNA polymerase δ, has been widely used as a marker of S-phase. In C. elegans early embryos, PCN-1 accumulation is cyclic, localizing to the nucleus during S-phase and the cytoplasm during the rest of the cell cycle. The C. elegans larval and adult germline is an important model systems for studying cell cycle regulation, and it was observed that the cell cycle regulator cyclin E (CYE-1 in C. elegans) displays a non-cyclic, continuous accumulation pattern in this tissue. The accumulation pattern of PCN-1 has not been well defined in the larval and adult germline, and the objective of this study was to determine if the accumulation pattern is cyclic, as in other cells and organisms, or continuous, similar to cyclin E. To study the larval and adult germline accumulation of PCN-1 expressed from its native locus, we used CRISPR/Cas9 technology to engineer a novel allele of pcn-1 that encodes an epitope-tagged protein. S-phase nuclei were labeled using EdU nucleotide incorporation, and FLAG::PCN-1 was detected by antibody staining. All progenitor zone nuclei, including those that were not in S-phase (as they were negative for EdU staining) showed PCN-1 accumulation, indicating that PCN-1 accumulated during all cell cycle phases in the germline progenitor zone. The same result was observed with a GFP::PCN-1 fusion protein expressed from a transgene. pcn-1 loss-of-function mutations were analyzed, and pcn-1 was necessary for robust fertility and embryonic development. In the C. elegans early embryo as well as other organisms, PCN-1 accumulates in nuclei only during S-phase. By contrast, in the progenitor zone of the germline of C. elegans, PCN-1 accumulated in nuclei during all cell cycle stages. This pattern is similar to accumulation pattern of cyclin E. These observations support the model that mitotic cell cycle regulation in the germline stem and progenitor cells is distinct from somatic cells, as it does not heavily rely on cyclic accumulation of classic cell cycle proteins.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 107 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 107 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 38 36%
Student > Bachelor 24 22%
Other 2 2%
Student > Ph. D. Student 2 2%
Lecturer 2 2%
Other 3 3%
Unknown 36 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 56 52%
Agricultural and Biological Sciences 5 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 <1%
Nursing and Health Professions 1 <1%
Immunology and Microbiology 1 <1%
Other 2 2%
Unknown 41 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 February 2019.
All research outputs
#18,633,675
of 23,083,773 outputs
Outputs from BMC Developmental Biology
#307
of 371 outputs
Outputs of similar age
#255,884
of 331,095 outputs
Outputs of similar age from BMC Developmental Biology
#3
of 3 outputs
Altmetric has tracked 23,083,773 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 371 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,095 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 3 others from the same source and published within six weeks on either side of this one.