↓ Skip to main content

Respiratory muscle training for cystic fibrosis

Overview of attention for article published in Cochrane database of systematic reviews, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (71st percentile)

Mentioned by

twitter
8 X users
facebook
3 Facebook pages

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
293 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Respiratory muscle training for cystic fibrosis
Published in
Cochrane database of systematic reviews, May 2018
DOI 10.1002/14651858.cd006112.pub4
Pubmed ID
Authors

Nathan Hilton, Arturo Solis‐Moya

Abstract

Cystic fibrosis is the most common autosomal recessive disease in white populations, and causes respiratory dysfunction in the majority of individuals. Numerous types of respiratory muscle training to improve respiratory function and health-related quality of life in people with cystic fibrosis have been reported in the literature. Hence a systematic review of the literature is needed to establish the effectiveness of respiratory muscle training (either inspiratory or expiratory muscle training) on clinical outcomes in cystic fibrosis. This is an update of a previously published review. To determine the effectiveness of respiratory muscle training on clinical outcomes in people with cystic fibrosis. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials register comprising of references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Date of most recent search: 17 April 2018.A hand search of the Journal of Cystic Fibrosis and Pediatric Pulmonology was performed, along with an electronic search of online trial databases up until 07 May 2018. Randomised controlled studies comparing respiratory muscle training with a control group in people with cystic fibrosis. Review authors independently selected articles for inclusion, evaluated the methodological quality of the studies, and extracted data. Additional information was sought from trial authors where necessary. The quality of the evidence was assessed using the GRADE system MAIN RESULTS: Authors identified 19 studies, of which nine studies with 202 participants met the review's inclusion criteria. There was wide variation in the methodological and written quality of the included studies. Four of the nine included studies were published as abstracts only and lacking concise details, thus limiting the information available. Seven studies were parallel studies and two of a cross-over design. Respiratory muscle training interventions varied dramatically, with frequency, intensity and duration ranging from thrice weekly to twice daily, 20% to 80% of maximal effort, and 10 to 30 minutes, respectively. Participant numbers ranged from 11 to 39 participants in the included studies; five studies were in adults only and four in a combination of children and adults.No significant improvement was reported in the primary outcome of pulmonary function (forced expiratory volume in one second and forced vital capacity) (very low-quality evidence). Although no change was reported in exercise capacity as assessed by the maximum rate of oxygen use, a 10% improvement in exercise duration was found when working at 60% of maximal effort in one study (n = 20) (very low-quality evidence). In a further study (n = 18), when working at 80% of maximal effort, health-related quality of life improved in the mastery and emotion domains (very low-quality evidence). With regards to the review's secondary outcomes, one study (n = 11) found a significant change in intramural pressure, functional residual capacity and maximal inspiratory pressure following training (low-quality evidence). A further study (n = 22) reported that respiratory muscle endurance was significantly longer in the training group (P < 0.01). No studies reported on any other secondary outcomes. Meta-analyses could not be performed due to a lack of consistency and insufficient detail in reported outcome measures. There is insufficient evidence to suggest whether this intervention is beneficial or not. Healthcare practitioners should consider the use of respiratory muscle training on a case-by-case basis. Further research of reputable methodological quality is needed to determine the effectiveness of respiratory muscle training in people with cystic fibrosis. Researchers should consider the following clinical outcomes in future studies; respiratory muscle function, pulmonary function, exercise capacity, hospital admissions, and health-related quality of life. Sensory-perceptual changes, such as respiratory effort sensation (e.g. rating of perceived breathlessness) and peripheral effort sensation (e.g. rating of perceived exertion) may also help to elucidate mechanisms underpinning the effectiveness of respiratory muscle training.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 293 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 <1%
United States 1 <1%
Unknown 291 99%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 39 13%
Student > Master 32 11%
Student > Ph. D. Student 27 9%
Student > Doctoral Student 23 8%
Researcher 23 8%
Other 45 15%
Unknown 104 35%
Readers by discipline Count As %
Medicine and Dentistry 61 21%
Nursing and Health Professions 58 20%
Sports and Recreations 14 5%
Social Sciences 9 3%
Agricultural and Biological Sciences 6 2%
Other 29 10%
Unknown 116 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 March 2022.
All research outputs
#5,430,538
of 25,461,852 outputs
Outputs from Cochrane database of systematic reviews
#7,435
of 12,090 outputs
Outputs of similar age
#96,506
of 344,326 outputs
Outputs of similar age from Cochrane database of systematic reviews
#118
of 152 outputs
Altmetric has tracked 25,461,852 research outputs across all sources so far. Compared to these this one has done well and is in the 78th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,090 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.2. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 344,326 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 152 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.