↓ Skip to main content

Perinatal Pb2+ exposure alters the expression of genes related to the neurodevelopmental GABA-shift in postnatal rats

Overview of attention for article published in Journal of Biomedical Science, May 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)

Mentioned by

twitter
3 tweeters

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Perinatal Pb2+ exposure alters the expression of genes related to the neurodevelopmental GABA-shift in postnatal rats
Published in
Journal of Biomedical Science, May 2018
DOI 10.1186/s12929-018-0450-4
Pubmed ID
Authors

Lorenz S. Neuwirth, Greg R. Phillips, Abdeslem El Idrissi

Abstract

Lead (Pb2+) is an environmental neurotoxicant that disrupts neurodevelopment, communication, and organization through competition with Ca2+ signaling. How perinatal Pb2+ exposure affects Ca2+-related gene regulation remains unclear. However, Ca2+ activates the L-Type voltage sensitive calcium channel β-3 subunit (Ca-β3), which autoregulates neuronal excitability and plays a role in the GABA-shift from excitatory-to-inhibitory neurotransmission. A total of eight females (n = 4 Control and n = 4 Perinatal) and four males (n = 2 Control and n = 2 Perinatal) rats were used as breeders to serve as Dams and Sires. The Dam's litters each ranged from N = 6-10 pups per litter (M = 8, SD = 2), irrespective of Pb2+ treatment, with a majority of males over females. Since there were more males in each of the litters than females, to best assess and equally control for Pb2+- and litter-effects across all developmental time-points under study, female pups were excluded due to an insufficient sample size availability from the litter's obtained. From the included pup litters, 24 experimentally naïve male Long Evans hooded rat pups (Control N = 12; Pb2+ N = 12) were used in the present study.  Brains were extracted from rat prefrontal cortex (PFC) and hippocampus (HP) at postnatal day (PND) 2, 7, 14 and 22, were homogenized in 1 mL of TRIzol reagent per 100 mg of tissue using a glass-Teflon homogenizer. Post-centrifugation, RNA was extracted with chloroform and precipitated with isopropyl alcohol. RNA samples were then re-suspended in 100 μL of DEPC treated H2O. Next, 10 μg of total RNA was treated with RNase-free DNase (Qiagen) at 37 °C for 1 h and re-purified by a 3:1 phenol/chloroform extraction followed by an ethanol precipitation. From the purified RNA, 1 μg was used in the SYBR GreenER Two-Step qRT-PCR kit (Invitrogen) for first strand cDNA synthesis and the quantitative real-time PCR (qRT-PCR). The effects of perinatal Pb2+ exposure on genes related to early neuronal development and the GABA-shift were evaluated through the expression of: Ca-β3, GABAAR-β3, NKCC1, KCC2, and GAD 80, 86, 65, and 67 isoforms. Perinatal Pb2+ exposure significantly altered the GABA-shift neurodevelopmental GOI expression as a function of Pb2+ exposure and age across postnatal development. Dramatic changes were observed with Ca-β3 expression consistent with a Pb2+ competition with L-type calcium channels. By PND 22, Ca-β3 mRNA was reduced by 1-fold and 1.5-fold in PFC and HP respectively, relative to controls. All HP GABA-β3 mRNA levels were particularly vulnerable to Pb2+ at PND 2 and 7, and both PFC and HP were negatively impacted by Pb2+ at PND 22. Additionally, Pb2+ altered both the PFC and HP immature GAD 80/86 mRNA expression particularly at PND 2, whereas mature GAD 65/67 were most significantly affected by Pb2+ at PND 22. Perinatal Pb2+ exposure disrupts the expression of mRNAs related to the GABA-shift, potentially altering the establishment, organization, and excitability of neural circuits across development. These findings offer new insights into the altered effects Pb2+ has on the GABAergic system preceding what is known regarding Pb2+ insults unto the glutamatergic system.

Twitter Demographics

The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 22%
Professor 1 11%
Professor > Associate Professor 1 11%
Student > Bachelor 1 11%
Unknown 4 44%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 22%
Neuroscience 2 22%
Psychology 1 11%
Unknown 4 44%

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 September 2018.
All research outputs
#7,260,273
of 13,528,132 outputs
Outputs from Journal of Biomedical Science
#381
of 659 outputs
Outputs of similar age
#122,009
of 268,645 outputs
Outputs of similar age from Journal of Biomedical Science
#1
of 1 outputs
Altmetric has tracked 13,528,132 research outputs across all sources so far. This one is in the 45th percentile – i.e., 45% of other outputs scored the same or lower than it.
So far Altmetric has tracked 659 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 268,645 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them