↓ Skip to main content

An investigation into inter- and intragenomic variations of graphic genomic signatures

Overview of attention for article published in BMC Bioinformatics, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An investigation into inter- and intragenomic variations of graphic genomic signatures
Published in
BMC Bioinformatics, August 2015
DOI 10.1186/s12859-015-0655-4
Pubmed ID
Authors

Rallis Karamichalis, Lila Kari, Stavros Konstantinidis, Steffen Kopecki

Abstract

Motivated by the general need to identify and classify species based on molecular evidence, genome comparisons have been proposed that are based on measuring mostly Euclidean distances between Chaos Game Representation (CGR) patterns of genomic DNA sequences. We provide, on an extensive dataset and using several different distances, confirmation of the hypothesis that CGR patterns are preserved along a genomic DNA sequence, and are different for DNA sequences originating from genomes of different species. This finding lends support to the theory that CGRs of genomic sequences can act as graphic genomic signatures. In particular, we compare the CGR patterns of over five hundred different 150,000 bp genomic sequences spanning one complete chromosome from each of six organisms, representing all kingdoms of life: H. sapiens (Animalia; chromosome 21), S. cerevisiae (Fungi; chromosome 4), A. thaliana (Plantae; chromosome 1), P. falciparum (Protista; chromosome 14), E. coli (Bacteria - full genome), and P. furiosus (Archaea - full genome). To maximize the diversity within each species, we also analyze the interrelationships within a set of over five hundred 150,000 bp genomic sequences sampled from the entire aforementioned genomes. Lastly, we provide some preliminary evidence of this method's ability to classify genomic DNA sequences at lower taxonomic levels by comparing sequences sampled from the entire genome of H. sapiens (class Mammalia, order Primates) and of M. musculus (class Mammalia, order Rodentia), for a total length of approximately 174 million basepairs analyzed. We compute pairwise distances between CGRs of these genomic sequences using six different distances, and construct Molecular Distance Maps, which visualize all sequences as points in a two-dimensional or three-dimensional space, to simultaneously display their interrelationships. Our analysis confirms, for this dataset, that CGR patterns of DNA sequences from the same genome are in general quantitatively similar, while being different for DNA sequences from genomes of different species. Our assessment of the performance of the six distances analyzed uses three different quality measures and suggests that several distances outperform the Euclidean distance, which has so far been almost exclusively used for such studies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 20%
Student > Bachelor 8 17%
Researcher 8 17%
Student > Master 7 15%
Professor 2 4%
Other 3 7%
Unknown 9 20%
Readers by discipline Count As %
Computer Science 12 26%
Agricultural and Biological Sciences 11 24%
Biochemistry, Genetics and Molecular Biology 7 15%
Physics and Astronomy 3 7%
Environmental Science 1 2%
Other 0 0%
Unknown 12 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 February 2016.
All research outputs
#15,342,608
of 22,821,814 outputs
Outputs from BMC Bioinformatics
#5,374
of 7,286 outputs
Outputs of similar age
#154,585
of 264,084 outputs
Outputs of similar age from BMC Bioinformatics
#78
of 118 outputs
Altmetric has tracked 22,821,814 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,286 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,084 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 118 others from the same source and published within six weeks on either side of this one. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.