↓ Skip to main content

A bacterial route for folic acid supplementation

Overview of attention for article published in BMC Biology, June 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)

Mentioned by

twitter
27 tweeters

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A bacterial route for folic acid supplementation
Published in
BMC Biology, June 2018
DOI 10.1186/s12915-018-0534-3
Pubmed ID
Authors

Claire Maynard, Ian Cummins, Jacalyn Green, David Weinkove

Abstract

To prevent folate deficiencies, many countries supplement various foodstuffs with folic acid. This compound is a synthetic oxidised folate that differs from naturally occurring reduced folates in its metabolism and uptake. Notably, safety reviews of folic acid supplementation have not considered interactions with gut bacteria. Here, we use the Caenorhabditis elegans - Escherichia coli animal- microbe model to examine a possible bacterial route for folic acid uptake. It has been assumed that supplements are taken up directly by the worm, especially because E. coli is unable to take up folates. However, E. coli, like many other bacteria, can transport the folate breakdown product, para-aminobenzoate-glutamate (PABA-glu), via AbgT and use it for bacterial folate synthesis. This pathway may impact host health because inhibition of bacterial folate synthesis increases C. elegans lifespan. Folic acid supplementation was found to rescue a C. elegans developmental folate-deficient mutant; however, a much higher concentration was required compared to folinic acid, a reduced folate. Unlike folinic acid, the effectiveness of folic acid supplementation was dependent on the E. coli gene, abgT, suggesting a bacterial route with PABA-glu uptake by E. coli as a first step. Surprisingly, we found up to 4% PABA-glu in folic acid preparations, including in a commercial supplement. Via breakdown to PABA-glu, folic acid increases E. coli folate synthesis. This pathway restores folate synthesis in a bacterial mutant defective in PABA synthesis, reversing the ability of this mutant to increase C. elegans lifespan. Folic acid supplementation in C. elegans occurs chiefly indirectly via bacterial uptake of breakdown products via E. coli AbgT, and can impact C. elegans development and longevity. Examining how folic acid supplementation affects bacterial folate synthesis in the human gut may help us to better understand the safety of folic acid supplementation.

Twitter Demographics

The data shown below were collected from the profiles of 27 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 21%
Student > Ph. D. Student 8 21%
Researcher 6 15%
Student > Master 4 10%
Student > Doctoral Student 2 5%
Other 3 8%
Unknown 8 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 28%
Biochemistry, Genetics and Molecular Biology 8 21%
Medicine and Dentistry 4 10%
Engineering 3 8%
Immunology and Microbiology 2 5%
Other 3 8%
Unknown 8 21%

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 March 2020.
All research outputs
#1,261,735
of 14,777,135 outputs
Outputs from BMC Biology
#405
of 1,273 outputs
Outputs of similar age
#39,599
of 275,745 outputs
Outputs of similar age from BMC Biology
#1
of 1 outputs
Altmetric has tracked 14,777,135 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,273 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 19.0. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 275,745 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them