↓ Skip to main content

RNA Metabolism in Neurodegenerative Diseases

Overview of attention for book
Attention for Chapter 10: Senataxin, A Novel Helicase at the Interface of RNA Transcriptome Regulation and Neurobiology: From Normal Function to Pathological Roles in Motor Neuron Disease and Cerebellar Degeneration
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Senataxin, A Novel Helicase at the Interface of RNA Transcriptome Regulation and Neurobiology: From Normal Function to Pathological Roles in Motor Neuron Disease and Cerebellar Degeneration
Chapter number 10
Book title
RNA Metabolism in Neurodegenerative Diseases
Published in
Advances in neurobiology, January 2018
DOI 10.1007/978-3-319-89689-2_10
Pubmed ID
Book ISBNs
978-3-31-989688-5, 978-3-31-989689-2
Authors

Craig L. Bennett, Albert R. La Spada, Bennett, Craig L., La Spada, Albert R.

Abstract

Senataxin (SETX) is a DNA-RNA helicase whose C-terminal region shows homology to the helicase domain of the yeast protein Sen1p. Genetic discoveries have established the importance of SETX for neural function, as recessive mutations in the SETX gene cause Ataxia with Oculomotor Apraxia type 2 (AOA2) (OMIM: 606002), which is the third most common form of recessive ataxia, after Friedreich's ataxia and Ataxia-Telangiectasia. In addition, rare, dominant SETX mutations cause a juvenile-onset form of Amyotrophic Lateral Sclerosis (ALS), known as ALS4. SETX performs a number of RNA regulatory functions, including maintaining RNA transcriptome homeostasis. Over the last decade, altered RNA regulation and aberrant RNA-binding protein function have emerged as a central theme in motor neuron disease pathogenesis, with evidence suggesting that sporadic ALS disease pathology may overlap with the molecular pathology uncovered in familial ALS. Like other RNA processing proteins linked to ALS, the basis for SETX gain-of-function motor neuron toxicity remains ill-defined. Studies of yeast Sen1p and mammalian SETX protein have revealed a range of important RNA regulatory functions, including resolution of R-loops to permit transcription termination, and RNA splicing. Growing evidence suggests that SETX may represent an important genetic modifier locus for sporadic ALS. In cycling cells, SETX is found at nuclear foci during the S/G2 cell-cycle transition phase, and may function at sites of collision between components of the replisome and transcription machinery. While we do not yet know which SETX activities are most critical to neurodegeneration, our evolving understanding of SETX function will undoubtedly be crucial for not only understanding the role of SETX in ALS and ataxia disease pathogenesis, but also for delineating the mechanistic biology of fundamentally important molecular processes in the cell.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 33%
Student > Bachelor 3 9%
Student > Doctoral Student 2 6%
Researcher 2 6%
Student > Postgraduate 2 6%
Other 5 15%
Unknown 8 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 30%
Neuroscience 4 12%
Medicine and Dentistry 4 12%
Agricultural and Biological Sciences 2 6%
Arts and Humanities 1 3%
Other 3 9%
Unknown 9 27%